EMERGENCY EXCAVATIONS AT THE
SAYYER SITE (44RN39), AREA B:
A PROTOHISTORIC SITE IN
ROANOKE COUNTY, VIRGINIA

Research Report Series No. 14

2004
Virginia Department of Historic Resources
2801 Kensington Avenue
Richmond, VA 23221
EMERGENCY EXCAVATIONS AT THE SAWYER SITE (44RN39), AREA B: A PROTOHISTORIC SITE IN ROANOKE COUNTY, VIRGINIA

Virginia Department of Historic Resources
Research Report Series No. 14

AUTHORS:
Michael B. Barber
Michael F. Barber

WITH A CONTRIBUTION BY:
Katherine Robinson Mickelson

With excavation, analyses, and report support from the Virginia Department of Historic Resources, Threatened Sites; with excavation and processing with volunteers from the Roanoke Chapter of the Archeological Society of Virginia.

1992
REVISED 2004
In the early winter of 1987, a portion of the well known Sawyer site (44RN39) in the City of Salem, Virginia, was subject to bulldozing. Members of the Archeological Society of Virginia were monitoring the site at the time, and several Native American pit features were noted after impact. Salvage excavations were initiated with notification to David Hazzard of the VDHR Threatened Sites Program. As copper artifacts were noted in the pit fill, Hazzard approached the senior author with the possibility of directing the excavation. With the ASV volunteers, excavations continued through December 1987 until the site was covered with 8–10' of rubble.

The site proved to be protohistoric with glass beads, copper, and iron artifacts recovered. Ten Native American pit features were recorded with 4 being fully excavated, 3 being bisected, 2 going unexcavated, and 1 likely a large post. The artifact assemblage included a majority of Dan River series ceramics, small triangular projectile points typed as Madison, Clarksville, and Hamilton. Lithics were primarily of chert although quartz and chalcedony were also used. The vertebrate fauna fit well with patterns seen at similar mountain sites.

The site was interpreted as that of a household with year-round occupation. The clustering of pit features is hypothesized as that of a structure and a series of post molds as a wind break. The date of occupation is ca. A.D. 1621–1635 and represents a protohistoric site as opposed to direct European contact.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2: Research Design</td>
<td>5</td>
</tr>
<tr>
<td>3: Features</td>
<td>7</td>
</tr>
<tr>
<td>4: Artifact Assemblages</td>
<td>17</td>
</tr>
<tr>
<td>5: Archaeobotany</td>
<td>33</td>
</tr>
<tr>
<td>(Katherine Robinson Mickelson 2000)</td>
<td></td>
</tr>
<tr>
<td>6: Conclusion</td>
<td>47</td>
</tr>
<tr>
<td>References Cited</td>
<td>51</td>
</tr>
<tr>
<td>Appendix: Artifact Finds List by Provenience</td>
<td></td>
</tr>
</tbody>
</table>
FIGURES

1 Location of 44RN39b in Virginia and topography of environs .. 2
2 Rubble filling operation ... 3
3 Site map .. 8
4 Feature 1, plan view and profile .. 9
5 Feature 2, plan view and profile .. 9
6 Feature 3, plan view and profile .. 9
7 Feature 4, plan view and profile .. 9
8 Feature 5, plan view and profile .. 10
9 Feature 5, profiled ... 11
10 Feature 5, fully excavated ... 11
11 Feature 6, plan view and profile .. 12
12 Feature 7, plan view and profile .. 12
13 Feature 8, plan view and profile .. 13
14 Feature 8, plan view at profile ... 13
15 Feature 8, profiled ... 14
16 Post molds .. 15
17 Selected ceramic pot sherds recovered from 44RN39b .. 19
18 Selected lithic artifacts recovered from 44RN39b ... 23
19 Trade goods recovered from 44RN39b ... 31

TABLES

1 Ceramics recovered from 44RN39b, compared by feature ... 18
2 Lithics recovered from 44RN39b, compared by feature ... 21
3 Lithic tools recovered from 44RN39b, compared by feature .. 22
4 Lithic debitage recovered from 44RN39b, compared by feature 24
5 List of vertebrate species represented in 44RN39b assemblage, compared by feature 25
6 Vertebrate faunal assemblage recovered from 44RN39b, compared by feature 26
7 Invertebrate faunal assemblage recovered from 44RN39b, compared by feature 30
8 Trade goods recovered from 44RN39b, compared by feature 30
9 Ethnobotanical remains by weight (grams) ... 34
10 Plant food remains by count of fragments ... 35
11 Plant food remains by weight .. 37
12 Seed counts .. 39
13 Percentage of identified seeds ... 41
14 Ubiquity of selected plant food remains .. 41
15 Paleoethnobotanical statistics for Late Woodland-historic sites in southwestern Virginia 41
ACKNOWLEDGMENTS

The overall success of the salvage excavations at 44RN39 – Area B is shared by a great number of people. First of all, the volunteer excavators from the Roanoke Chapter of the Archeological Society of Virginia proved to be the first line of defense against loss of information on the past. Thanks go to Dan and Mary Vogt, Joey Moldenhauer, Liz Paull, Gene Barfield, and Horace and Estella Hood. Perry Tourtellotte aided in the transit work. I would like to thank my wife, Janice, for putting up with all the dirt, rocks, and bones which cluttered our residence as well as for her support in all my archaeological pursuits. Thanks also go to the landowner, Mr. Lonny Sawyer, for his cooperation in allowing the excavation on his property and in delaying site burial with overbruden.

Members of the Virginia Department of Historic Resources were fundamental in the saving of information on this portion of the site and through the years since. Dave Hazard, Randy Turner, and Tom Klatka worked diligently during both the excavation and analyses phases of the work to see that the project moved forward.

This report is dedicated to the members of the Tutelo Tribe, both past and present, and to the memory of Britt Rossi, a friend of Native Americans and a friend of archaeology.
1: Introduction

The Sawyer site (44RN39), sometimes referred to as the Thomas/Sawyer site after its two previous owners, is located in the Ridge and Valley Physiographic Province of Virginia within the City of Salem, Roanoke County (Figure 1). Found on a second terrace on the south bank of the Roanoke River, the site is within a relatively broad alluvial bottom. The site runs in a linear fashion parallel to the river for 1500’ following the terrace edge. Soils are of a sandy alluvium over an orange/yellow clay subsoil. The soil is well drained and productive. Two decades ago, the site was in pasture but more recently has been developed into a light industrial park. Usually the fertile topsoil is carted away for sale and the terrain elevated through rubble deposition to raise the elevation about the 100 year flood level. Development has been haphazard with the 100–150’ linear lots subject to development at different times.

The site was discovered by Mr. Joseph Coffee of Salem in 1979 (Moldenhauer 1987) using predictive attributes distilled from Coe’s (1964) work in North Carolina. The now defunct Virginia Research Center for Archaeology designated the site as 44RN39. In anticipation of the site’s development, the Roanoke Valley Chapter of the Archeological Society of Virginia (ASV) began on-site excavations in 1980 under the directions of Mr. Horace Hood, long time member of the ASV (Barber 1988). The recovery of Dan River series ceramics and small triangular projectile points indicated a Late Woodland occupation although a limited number of collected broadspear points were Late Archaic. As early as 1987, 19 features had been recorded. According to Moldenhauer (1987), common features were straight-sided, flat-bottomed refuse filled pits as well as relatively large, shallow roasting pits with an large number of fire-cracked rock inclusions. One feature was interpreted as a subterranean kiln and was dated to A. D. 1585±60.

Due to the threats of development, the site was included in the Virginia Division of Historic Landmarks’ (now the Virginia Department of Historic Resources) list of threatened sites. In the late fall of 1987, a member of the Roanoke ASV Chapter noted earthmoving activities on 44RN39 in an area just east of the previous ASV activities. In an examination of the exposed subsoil, several pit features were visible. It was indicated by the owner, Mr. Joseph Thomas, that all the topsoil would be removed and the area then covered by 10’ of rubble by the end of December of that year (Figure 2). Mr. Thomas was kind enough to grant permission for excavation while working around the prehistoric component. The ASV immediately initiated salvage excavations. Upon the recovery of copper artifacts, Mr. David Hazzard, VDHL Threatened Sites Coordinator, was contacted and subsequently enlisted the senior author to coordinate excavations (Barber 1988). Although salvage efforts in this area ended at the beginning of 1988, over the next five years, four additional salvage campaigns were carried out at the site. Due to the varied excavation eras and time periods, the site was divided arbitrarily into Area A (the original excavations by the ASV in the western portion of the site); Area B (near center site); Area C (falling between Area A and B and to the south); and Area D (the eastern portion of the site extending from Area B to the trailer park to the east).
Figure 1. Location of 44RN39b in Virginia and topography of environs.
Figure 2. Rubble filling operation.
The overall research design for the excavation of 44RN39 was formulated in consideration of season (winter), time available (4 weeks), and personnel (unpaid ASV volunteers). Although the excavation was framed in the context of emergency salvage, recovery efforts were organized in such a manner as to ensure maximum recovery in view of existing circumstances. As opposed to on-site screening, all feature fill was bagged for future processing (with minor exceptions). Fragile bone material was identified in the field and wrapped in aluminum foil. Freezing and thawing took its toll, particularly on the animal bone where many measurements cannot be taken. Excavation conditions were not pristine. At the onset of excavations, circa half of Area B had been impacted by heavy equipment with top soil and some subsoil removed. Through the efforts of ASV member Mr. Dan Vogt and the cooperation of the land owner, remaining soil removal was limited to topsoil. The field methodology can be summarized as follows:

1. After bulldozer removal of the topsoil, the Area B was flat shoveled in order to isolate cultural features, post molds, and other anomalies. All soil discolorations were pin flagged.

2. Features were isolated, drawn, profiled and fully excavated, time permitting. Features were also photographed in black and white print film and color slides. Soils within pit features were removed in 0.25' arbitrary levels. In most cases, features were completely excavated and a final drawing made. Exceptions were Features 2 and 3 which contained little artifactual material and Feature 8 where only half of the feature could be removed prior to the area's covering with rubble. Time did not permit the excavation of Features 10 and 12.

3. All artifacts recovered by gross inspection were collected in paper bags. Bags were marked in the field by site number, area, and provenience. Fragile artifacts were wrapped in tin foil or, if small enough, placed in film canister. These were transported to the lab where they were eventually cleaned and processed by ASV volunteers.

4. All feature fill was bagged for future processing. In this case, the wet-screening took place within a year. This was instituted through window-mesh hardware cloth. It should be noted that the soils were wet-screened, not floated. In 1988, the flotation of feature fill was rare in Virginia, particularly during salvage operations.

5. All cultural features and anomalies were mapped using a paragon transit. A datum point was established south of the excavations and angles to the center of discolorations taken. Distances were measured by tape. Elevations were recorded but were of dubious value due to bulldozer alterations. Readings were taken to existing structures, natural features, and other landmarks which may or may not still exist.

The overall analytical research design was formulated to examine each artifact category in such a manner as to allow for comparisons both on and off site. The research design called for the following:

1. In order to relate the site and its artifactual assemblage to other sites, a date of occupation was required. This would be implemented through artifact comparisons as well as the use of radiocarbon dating.

2. The overall arrangement of features, postmolds, etc. on the landscape would be examined in such a manner as to establish settlement pattern relationships to known patterns, within the broader site parameters, and to known sites.
3. The subsistence patterns would be examined in order to ascertain environmental relationships, eco-niche use, and overall utilization systems.

4. The ceramic, lithic, and trade good assemblages would be quantified and manufacture nuances, extra-site relationships, and foreign influences examined. The assemblages would be compared to other sites.

5. The Sawyer site Area B would be examined at the regional level.
3: Features

At the time of discovery of the exposed cultural features at 44RN39 Area B, 12 relatively large soil discolorations and 31 smaller stains were recorded (Figure 3). Further examination reduced the number of Native American features to 10 and the post molds to 2 lines which may be interconnected.

PITS

Twelve discolored soil anomalies were recorded. The natural and cultural features were numbered as found and can be summarized as follows:

- Feature 1: Cultural Pit - fully excavated
- Feature 2: Cultural Pit - bisected only
- Feature 3: Cultural Pit - bisected only
- Feature 4: Cultural Pit - fully excavated
- Feature 5: Cultural Pit - fully excavated
- Feature 6: Cultural Pit - bisected
- Feature 7: Tree stain - fully excavated (in order to determine)
- Feature 8: Cultural Pit - bisected
- Feature 9: unexcavated
- Feature 10: unexcavated, probable post mold
- Feature 11: nonexistent, originally bulldozer soil smear
- Feature 12: unexcavated.

Of the 12 anomalies noted, 7 were cultural features which were at least partially excavated, 2 were likely cultural features which could not be examined due to time constraints, 1 was a tree root stain, 1 was probably a large post mold, and 1 was nonexistent. For a finds list per feature, see Appendix.

Feature 1

Feature 1 was a roughly circular basin-shaped pit feature which was filled with refuse. Three feet in diameter, the pit was 0.75' in depth (Figure 4). Sides sloped inward, and the fill was dark brown in color and highly organic. Wood charcoal was abundant throughout. 1,375 cultural items were recovered during excavation. Feature 1 was an exception as only fill from the northern half was retained for wet-screening; the southern half had been dry-screened early in the excavation sequence, using more traditional field methods. European artifacts were represented by a cylindrical piece of copper (presumed European) and 3 white glass beads. One piece of purple wampum, 15 shell seed beads, and 6 bone seed bones were also recovered. As well as the base of a chert Madison projectile point. One drill and a cutting tool pointed to other on-site activities. Copiousdebitage was recovered dominated by chert flakes. Ceramics were almost exclusively Dan River with sand-tempering. Two probable deer rib weaving shuttles, a rib splinter awl, and an ulnar awl were present. Faunal preservation was good and was dominated by white-tailed deer.

Feature 2

Feature 2 was a straight to slightly sloping sided, basin-shaped cultural feature. The pit measured roughly 3.0' in diameter and was 0.75' in depth at maximum center (Figure 5). Fill was of a light brown organic coloration. The feature was bisected with few artifacts recovered. Only 3 flakes were collected: 1 chert, 1 chalcedony, and 1 quartz. The feature was recorded at bisection, but no excavation was implemented. It would appear that the pit was refilled, not with cultural refuse but rather with slightly organic, artifact poor soils.

Feature 3

Feature 3 was a slightly belled cultural pit. Measuring 4.25' north/south by 3.55' east/west, the pit was el-
liprical (Figure 6). Depth at maximum was 1.50'. Fill and artifact content were similar to that of nearby Feature 2. Artifact content was made up of 8 flakes and 4 potsherds. Chert, quartz, and chalcedony debitage was present. Two potsherds were sand-tempered and 1 was limestone-tempered. A field decision was made to remove a portion of the feature with shovel and to screen that material through 1/4" mesh. As few artifacts were recovered, excavation ended at bi-section recordation.

Feature 4

Feature 4 was a basin-shaped pit filled with domestic refuse. Measuring 2.8' in diameter, the feature was 0.60' deep (Figure 7). Fill was dark brown and extremely organic with abundant charcoal throughout. One white and 1 blue glass bead were recovered from Feature 4 as well as 20 shell and 4 bone seed beads. One quartz Clarksville projectile point was noted. Debitage was dominated by chert and ceramics by sand-tempering. Fauna was dominated by *Terrapene carolina* (eastern box turtle) although some damage to the assemblage was caused by freezing and thawing.

Feature 5

Feature 5 was a relatively deep pit with a 2.8'-3.0' surface diameter and was 1.90' in depth (Figures 8-10). The pit was slightly belled. The pit's depth may be more indicative of normal features prior to heavy machinery interaction. Fill was deeply organic and contained a high frequency of charcoal. Five pieces of copper, an iron pin, and 1 white glass bead were collected from the fill. Five Madison type projectile points were recovered from the fill with 4 of the points with blade edge serrations, possibly a Midwestern influence. Chert again dominated the assemblage with numerous tertiary flakes recovered. Ceramics were Dan
Feature 1 - Circular Trash Pit
3.1' Diameter 0.70' Deep

Plan View.

South 1/6 of Pit taken 0.30' Below Bottom.

Profile View - looking north

Figure 4. Feature 1, plan view and profile.

Feature 2 - Circular Trash Pit
3.0' wide 0.78' Deep

Profile View - looking north

Figure 5. Feature 2, plan view and profile.

Feature 3 - Circular Pit - Basically Sterile
4.0' Diameter 1.5' Deep

Unexcavated

Excavated to bottom of feature

Profile View - looking north

Figure 6. Feature 3, plan view and profile.

Feature 4 - Circular Trash Pit
2.8' Diameter 0.75' Deep
(completely excavated prior to drawing)

Profile View - looking north

Figure 7. Feature 4, plan view and profile.
Feature 5- Circular Trash Pit
Excavated prior to N-S profile draang

Figure 8. Feature 5, plan view and profiles.

River sand-tempered. Fragments from one cord-marked pot, with finger-pinched rim, were recovered from all levels of the feature. This is indicative of single episode filling. Faunal remains were not abundant although deer, elk, bear, and turtle were collected. Only 7 land snail shells were present, perhaps indicating use into cold weather.

Feature 6

Feature 6 was a classic example of a bell-shaped storage pit. Measuring 4.0' east/west by 3.25' north/south, the sides were incurvate for 0.30' below the current ground surface and then curved outward to the bottom which was a maximum of 1.95' below current ground surface (Figure 11). The upper 1.30' was a light brown mottled fill with a low number of artifacts noted. Field notes indicate that most of the recovered artifacts were from the outer edge of the pit. Circa 1.30' below ground surface, a 0.10' grey ash level was encountered. The lower level of the pit was filled with dark brown organic fill with a high frequency of charcoal and artifacts present, particularly bone.

Copper sheet artifacts included 1 elongated triangle and 1 rectangular piece. Also collected was 1 blue glass seed bead. Two quartz and 1 chert Madison projectile point were recovered as was 1 chert Clarks-ville and 1 chert Hamilton. In a sealed context, the 3 point styles were used contemporaneously. Scrapers, 1 secondary flake cutting tool, and an exotic pink chert utilized blade was also collected. Chert dominated the debitage. Although sand-tempered sherd were the most frequent, limestone-tempered and grit-tempered ceramics were also present. Subsistence fauna was dominated by *Odocoileus virginianus* although mice were more plentiful. A minimum number of 6 mice were collected from the bottom of the pit. It may be that the pit was open and the rodents entered but could not extricate themselves. Land snails were present in large numbers, and ethnobotanical materials such as corn cobs, corn kernels, and walnut shells were noted.

Feature 7

Feature 7 proved to be a root stain. At surface recordation, the organic discoloration measured 4.5' northwest/southeast by 3.5' southwest/northeast (Figure 12). As excavation continued, the stain proved discontinuous with a large tap root at the bottom. A low frequency of artifacts were collected from the natural anomaly including 2 chert, 1 quartz flake, 12 unidentified mammal fragments, 1 crushed quartz-tempered, smoothed over cord-marked sherd, and 11 limestone-tempered sherd. Nine of the limestone-tempered sherd were fabric-impressed and very similar, likely from the same pot, and 2 were too small for surface treatment determination. This is noteworthy as these ceramics form the majority of the limestone-tempered ware from the site. In addition, the pottery matrix lacked mica indicating that it was not produced on-site. As this temper is usually associated with the Radford series, more abundant to the west, the presence of these sherd is seen as influence from the headwaters of the Roanoke and the New River area.
Figure 9. Feature 5, profiled.

Figure 10. Feature 5, fully excavated.
Feature 8

Feature 8 was oval in plan measuring 3.0' north/south by 2.5' east/west (Figure 13-15). Fill was dark brown and very organic. Bone and charcoal were visible on the feature's surface prior to excavation. Sides were incurvate for 0.30-0.50' where the pit sloped radi- cally outward extending dimensions by a foot or more. In profile, the lower level was of a lighter brown fill with charcoal and ash lenses. A hearth of fire-cracked rocks and ash were noted at the pit's bottom. Unfortunately time allowed for only the removal of the south half of the pit.

One white glass seed bead, 2 purple wampum beads, 13 shell seed beads, and 9 bone seed beads were found within pit fill. Two Madison type points were recovered with one quartz and the second a serrated edge chert point. A cutting tool and an end scraper were also recorded. Chert dominated the lithic assem- blage although quartz and chalcedony were also present. Dan River ceramics were dominate. Deer was the primary subsistence species with many antler frag-
Figure 13. Feature 8, plan view and profile.

Figure 14. Feature 8, plan view at profile.
Feature 10

Feature 10 was a relatively small oval stain measuring 1.65' east/west by 1.25' north/south. The central portion of the stain contained a average 0.45' diameter concentration of charcoal. This probably represents a burned post mold with surrounding post hole for setting. Time did not allow for excavation.

Feature 12

Feature 12 was an elliptical dark brown soil discoloration. The stain measured 4.0' southwest/northeast by 3.25' northwest/southeast. Feature 12 is found west of the post mold configuration, the only feature in that area. Although the stain was mapped time was not available for further study. Feature 12 is probably a refused filled pit.

Post Molds

Thirty-one anomalies were recorded as post molds and designated by PM and sequential letters (Figure 16). Due to the exigencies of winter salvage operations, post mold examination was deemed of secondary importance with feature excavation emphasized. Still, 25 post molds were excavated with one disappearing completely (PM A), one a tap root (PM G), and one proving to be a rock configuration with no stain (PM L). Post molds varied in coloration from a dark brown (black in Figure 16), brown (gray in Figure 16), and light brown (lightly stippled in Figure 16). In general, the posts formed 2 lines at roughly right angles. Excavation technique was expedient with dark soil removed with trowel and spoon, measurements taken, and the profile recorded.

If the assumption is made that Features 1-7 form the activity center of the settlement, the western line of posts is roughly 80' away and the northern line at a 60'-70' distance. By the same token, Feature 8 is found only 30' from the western line and Feature 9 only ca. 1.0' east of PM W. The first line of posts lies west of the pit features (except Feature 12), and includes PM B through PM K which may pivotal to both lines. The 10 posts are fairly consistent in form, although there is a continuum of variance in diameter, depth, and bottom shape. Diameter varied from 0.32' to 0.59', depth from 0.15' to 0.68', and bottom shape from bluntly pointed to rounded. Spacing is another
<table>
<thead>
<tr>
<th>#</th>
<th>Diameter</th>
<th>Depth</th>
<th>Distance to next PM</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>disappeared</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.33’</td>
<td>0.27’</td>
<td>3.72’ to C</td>
<td>41</td>
</tr>
<tr>
<td>C</td>
<td>0.47’ x 0.40’</td>
<td>0.33’</td>
<td>3.05’ to D</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>0.425’</td>
<td>0.27’</td>
<td>4.00’ to E</td>
<td>38</td>
</tr>
<tr>
<td>E</td>
<td>0.36’ x 0.34”</td>
<td>0.31’</td>
<td>5.41” to F</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>0.55’</td>
<td>0.43’</td>
<td>9.87” to G</td>
<td>24</td>
</tr>
<tr>
<td>G</td>
<td>0.35”</td>
<td>1.89”</td>
<td>3.46” to H</td>
<td>10</td>
</tr>
<tr>
<td>H</td>
<td>0.59’</td>
<td>0.68’</td>
<td>5.04’ to I</td>
<td>21</td>
</tr>
<tr>
<td>I</td>
<td>0.58’</td>
<td>0.57’</td>
<td>5.96’ to K</td>
<td>35</td>
</tr>
<tr>
<td>J</td>
<td>0.38’</td>
<td>0.15’</td>
<td>7.65’ to L</td>
<td>55</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>rocks - no post</td>
<td>0.0</td>
<td>7.95’ to M</td>
<td>99</td>
</tr>
<tr>
<td>M</td>
<td>0.42’</td>
<td>0.41’</td>
<td>1.20’ to N</td>
<td>43</td>
</tr>
<tr>
<td>N</td>
<td>0.44’</td>
<td>0.57’</td>
<td>4.28’ to O</td>
<td>104</td>
</tr>
<tr>
<td>O</td>
<td>0.51’</td>
<td>1.17’</td>
<td>1.26’ to P</td>
<td>95</td>
</tr>
<tr>
<td>O'</td>
<td>0.31’</td>
<td>0.48’</td>
<td>0.70’ to P</td>
<td>116</td>
</tr>
<tr>
<td>P</td>
<td>0.43’</td>
<td>1.14’</td>
<td>3.31’ to Q</td>
<td>128</td>
</tr>
<tr>
<td>Q</td>
<td>0.32’</td>
<td>1.50’</td>
<td>4.10’ to R</td>
<td>87</td>
</tr>
<tr>
<td>R</td>
<td>0.37’</td>
<td>0.76’</td>
<td>3.81’ to S</td>
<td>107</td>
</tr>
<tr>
<td>S</td>
<td>0.48’</td>
<td>0.55’</td>
<td>5.37’ to T</td>
<td>97</td>
</tr>
<tr>
<td>T</td>
<td>0.35’</td>
<td>0.47’</td>
<td>1.06’ to U</td>
<td>193</td>
</tr>
<tr>
<td>U</td>
<td>0.45’</td>
<td>0.82’</td>
<td>3.62’ to V</td>
<td>108</td>
</tr>
<tr>
<td>V</td>
<td>0.46’</td>
<td>0.40’</td>
<td>1.69’ to W</td>
<td>93</td>
</tr>
<tr>
<td>W</td>
<td>0.46’</td>
<td>0.45’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: angles are all degrees east of north.

Figure 16. Post molds.
differential varying from ca. 3.0' to almost 16.0' but with most at 4.0' to 5.0' intervals. PM B through PM F are fairly consistent. A 15' break occurs if PM G is removed as a tap root. PMs H-J are consistent with a 15' break to PM K. The “missing” posts may or may not be real. With some molds less than 0.15' in depth, the bulldozing activity may have obliterated the intervening molds.

The northern line of post molds suffers the same distributional and attributional problems. Spacing is reduced in some cases to ca. 1.0' in distance between posts. In addition, PMs O–Q are much deeper than the adjacent molds which, by and large, are similar in size and depth to the western line.

If one makes the assumption that the configuration of posts was culturally functional, it is also assumed that the original line of posts were placed at 3.0' to 5.0' intervals and that the intervening posts were removed by modern mechanization. Alternatively, a break in the line may reflect a gate or opening for ingress and egress. Posts placed in close proximity, may reflect maintenance or reinforcement over time. The few deeper posts may be related to energy efficiency where, if original efforts, energy output was reduced for practical purposes. If the lines are continuous at their almost right angle intersection, the lines form a 60' line to the west and a 40' line to the north of most of the pit features. Spacing at 3.0' to 5.0' intervals is not functional for the defensive purposes of a palisade. After excavating at the site in December 1987 and several winters thereafter, it has been noted that the prevailing winds come down the valley from the west and north and are brutal in winter. The posts may mark a wind break wall with the purpose of protecting the site from the harsh winds of winter. With branches woven between the posts, the wall may have protected the settlement from excessive wind chill in winter.
4: Artifact Assemblages

CERAMICS

The ceramic assemblage for the features found in the protohistoric portion of Sawyer site is surprisingly small, consisting of only 126 sherds (Table 1). Five types of tempering agents were noted within the group: sand, grit, limestone, crushed quartz, and shell. Sand-temper was characterized by particle inclusion of less than a millimeter in size, and the agent is indistinguishable from nearby river sands. Grit-temper was predominately quartz particles clustering in size at ca. 1 mm. Crushed quartz temper included quartz particles in the range of 2 mm. Limestone-tempering was usually comparatively large in size, above 2 mm and was often identified by the irregular holes left in the sherds after the limestone had weathered away. Mussel shell-tempering was determined by flat holes left by eroded shell particles. As with most ceramics produced along the Roanoke River, the pottery matrix includes a high frequency of mica within the clay.

The distribution of tempering at the site was as follows: 88 sand-tempered sherds (69.84%), 24 limestone-tempered sherds (19.05%), 9 grit-tempered sherds (7.14%), 3 crushed quartz-tempered sherds (2.38%), and 2 shell-tempered sherds (1.59%). Of the 88 sand-tempered sherds, 64 had cord-marked surface treatment. Other surface treatments include 4 smoothed surfaces, 5 fabric-impressed, 3 smoothed over cord-marked, 1 knot roughened (or knotted net), 1 simple-stamped, and 5 of undetermined surface treatment. All the sand-tempered ceramics fit well within the Dan River series as first presented by Coe and Lewis (1952) and elaborated on by Holland (1970:49-51). As Hodges (1995:209) noted, Dan River ceramics are dominant during the Late Woodland time period along the Roanoke River from the southern Virginia Piedmont into the Ridge and Valley along the upper reaches of the river. Holland (1970:49-51), in his survey of southwest Virginia, identified the ware's heavy distribution along the Roanoke River but also notes a clustering on the New River. The 8 "grit-tempered" sherds also fall into this series as Gardner's (1980) Dan River variant Stokes which contains coarse sand in the range of 0.5 mm to 1.0 mm. Surface treatment for these sherds included 5 cord-marked, 1 knot roughened, 1 smoothed over cord marked, and 1 of undetermined surface treatment.

Three rim sherds were noted for the Dan River series (Figure 17). Feature 1 produced a fine sand-tempered, smoothed over cord-marked, straight rim sherd with the lip finger flattened which produced subtle wider areas on the exterior. Feature 5 contained a mended fine sand-tempered, cord-marked rim sherd which is finger-pinched on the lip surface which extends slightly over the exterior. Sherds from this rim were recovered throughout the feature indicating quick, single episode use. The third rim sherd was recovered from Feature 8. This sherd was fine sand-tempered, surface smoothed with a straight, finger-pinched rim to an excurvate shoulder. An incised line runs parallel to the rim along the shoulder and sloppily applied lines were incised below the line at oblique angles (see Figure 17).

The 24 limestone-tempered sherds include 11 fabric-impressed surfaces, 6 cord-marked surfaces, 1 rim sherd, and 6 undetermined treatments. The 9 fabric-impressed sherds recovered from tree stain Feature 7 are very similar in temper, color, and condition and may represent the same vessel. They also lack mica inclusions which points to manufacture elsewhere. The rim sherd is a small straight lipped fragment. It should be noted that Feature 7 was not cultural and lacked any European trade good inclusions. The limestone-tempered ceramics of southwest Virginia can be placed within the Radford series as described by Evans (1955:64-68) and Holland (1970:64-67). Holland (1970:67) notes a distribution throughout western
<table>
<thead>
<tr>
<th>Feature</th>
<th>Total</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan River</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>53</td>
<td>17</td>
<td>13</td>
<td>22</td>
<td>127</td>
<td>0</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem termination, sand temper, smooth exterior</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rim: smoothed cord marked rim</td>
<td></td>
</tr>
<tr>
<td>Finger flattened, sand temper</td>
<td></td>
</tr>
<tr>
<td>Smooth surface, sand temper, incised lines</td>
<td></td>
</tr>
<tr>
<td>Cord marked, sand temper</td>
<td></td>
</tr>
<tr>
<td>Knot roughened, sand temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, sand temper</td>
<td></td>
</tr>
<tr>
<td>Other Types</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smoothed; crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, grit temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface; grit temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, grit temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, grit temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Shell temper, heavily burned</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, grit temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, limestone temper, flat, straight</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Simple stamped, sand temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface</td>
<td></td>
</tr>
<tr>
<td>Cord marked, shell temper, grit temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, shell temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, flat, straight</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, shell temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, limestone temper, flat, straight</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, limestone temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Simple stamped, sand temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface</td>
<td></td>
</tr>
<tr>
<td>Cord marked, shell temper, grit temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, shell temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, flat, straight</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, shell temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Simple stamped, sand temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Simple stamped, sand temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface</td>
<td></td>
</tr>
<tr>
<td>Cord marked, shell temper, grit temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, shell temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, flat, straight</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, shell temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Fabric impressed, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Simple stamped, sand temper</td>
<td></td>
</tr>
<tr>
<td>Cord marked, smooth exterior</td>
<td></td>
</tr>
<tr>
<td>Finger pinched rim, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface, crushed quartz temper</td>
<td></td>
</tr>
<tr>
<td>Undetermined surface</td>
<td></td>
</tr>
</tbody>
</table>
Figure 17. Selected ceramic pot sherds recovered from 44RN39b (a - Dan River Series pottery sherds, mended portion of a typical vessel [sherds from levels 1, 2 and 5 of Feature 5]; b - Dan River Series pot sherd with incised surface decoration [provenience 8D4]; c - Radford Series pottery sherd, limestone tempered, cord marked surface [provenience 3C1]; d - grit tempered pottery sherd [provenience 8D1]).

Virginia with a clustering of sites containing Radford wares along the Clinch, the North Fork of the Holston, the New, and the Roanoke Rivers. Holland (1970:67) dated the series from the early 14th century through the historic period. Egloff (1987:11) places its use between A.D. 1000 and 1700.

Two shell-tempered sherds were recovered. One was cord-marked, and the second was of undetermined surface treatment. Shell-tempering of this type has been designated the New River series as described by Evans (1955:56–59). Holland (1970:63) shows a distribution along the New River and Tennessee River drainages as well as 2 sites at the headwaters of the Roanoke.

Three crushed quartz-tempered sherds were also recovered within the feature fill. One is cord-marked, one is smoothed over cord, and the third is fabric-impressed. Varying in size and color between sherds, the examples all include particles of 2 mm or larger. While the sherds may represent the earlier crushed-stone Grayson or Albemarle series, this is unlikely given the time frame. Probably a more acceptable alternative is that these sherds represent an idiosyncratic upper end of clastic particle size accepted within the Dan River ceramic makers.

Dan River ceramics dominate the assemblage. It is interesting to note that the Sawyer ceramics contain no Frederick check-stamped sherds which made up 23% of a ceramics sample for the 17th century component at the Graham-White site (44RN21) (Klatka and Klein 1993). As the Graham-White site is located just down stream from Sawyer and dates to the later 17th century, the absence is important. Apparently, this Piedmont ceramic influence dated after the occupation at 44RN39 Area B. It is also noteworthy that 64 of 88 sand-tempered Dan River sherds are cord-marked (76.72%) or, if smoothed over cord is included, 67 of 88 (86.14%). Hodges (1995:212) found it remarkable that the first half 17th century Hurt Power Plant site (44PY144) in Pittsylvania County,
Virginia, contained a very high 29.6% of cord-marked surface treatment. Gardner (1980:39) suggests that cordmarking declines through time for Dan River ceramics, and Hodges (1995:213) noted very low percentages for cord among a number of sites in the Ridge and Valley. She suggested that the high frequency at Hurt was a result of on-site idiosyncratic behavior. This may be particularly true if the settlement is a single household or small hamlet where a small number of individuals would control ceramic production. With regard to the Sawyer site, the same explanation may hold true although sample size may be error causing.

Most of the features are dominated by Dan River ceramics. Within Feature 1, 7 of the 8 sherds are Dan River; in Feature 4, likely 8 of 9; in Feature 5, 49 of 53; in Feature 6, likely 7 of 17; and in Feature 8, 15 of 22. The tree stain Feature 7 is the anomaly with 11 of 12 sherds limestone-tempered. These sherds lack the mica inclusions within the clay which are present in the vast majority of the assemblage and were manufactured off-site and transported in. On the whole, however, this portion of 44RN39 falls well within the Dan River culture for ceramics.

In addition to the pot sherds, 1 pipe stem fragment was recovered from the surface of Feature 6. The sand-tempered fragment was the stem termination with a smooth exterior. The bore diameter was ca. 7 mm.

Lithics

Of the 7,505 lithic artifacts recovered, 40 (0.53%) were tools (Table 2). Of the 40 stone tools recovered from pit features at the site: 16 were projectile points (and fragments) (40.00%), 5 scrapers (12.50%), 2 cutting tools (5.00%), 2 drills (5.00%), 1 utilized blade (2.50%), 1 spokeshave (2.50%), 1 spokeshave/cutting tool (2.50%), 8 broken bifaces (20.00%), and 3 hammerstones (7.50%) (Table 3).

Of the 16 projectile points, 10 were manufactured from chert and 6 were made of quartz. Thirteen could be typed: 10 Madison, 2 Clarksville, and 1 Hamilton (Figure 18). As Feature 6 contained all 3 types, it is assumed that they all used contemporaneously. Madison points are small to medium sized triangular points, usually isosceles but sometimes equilateral. Craftsmanship is good and cross-sections are flattened or flattened/convex. Madison points have been dated to A.D. 1400–1700 at other Virginia sites (MacCord and Hranicky 1979:40) and to the Late Prehistoric to Early Historic by Ritchie (1961:33–34) for New York. Five of the Madison points exhibit serrated edges. This may be seen as Midwestern influence similar to the Fort Ancient triangles, although the workmanship is much better and the Madisons broader and shorter in length.

Clarksville points are small equilateral triangles with flattened cross-sections. Proposed use dates fall between A.D. 1400 and A.D. 1700 (MacCord and Hranicky 1979:42). Hamilton points are elongated isosceles triangles dated by Hranicky and Painter (1993:80) to A.D. 250–1000 although, from this excavation, it is obvious that their period of use extends into the Protohistoric period.

The vast majority of triangular points recovered from this portion of the Sawyer site are flattened or flattened/convex in cross-section. This relates to their core-and-flake method of manufacture. In this case, a chert or quartz core was taken and a flake (or flakes) removed. The flake was then taken and soft-hammered and pressure flaked into the point. The bifacial reduction technique, which can be identified by a biconvex cross-section, was seldom used for projectile point production at Sawyer during the Protohistoric Period.

Five scrapers were recovered, 4 of black chert and 1 endscraper of white quartz. Three were end scrapers, one a sidescraper, and one was a utilized primary blade. The formal scrapers are relatively small in size ranging from 14.90 mm to 18.70 mm in length. These scrapers are similar to those identified by Klatka and Klein (1993) for the Graham-White site. One drill base and 1 drill bit were recovered, 1 of black chert and 1 of quartz. The 2 cutting tools were utilized flakes with a primary flake showing micro-flake wear (hard material) and a secondary flake showing polish wear (soft material). A single blade of pink chert was also used in a cutting function. One black chert irregular S-shaped, humped spokeshave was recovered. The woodworking tool had secondary reduction on the obverse but only pressure flaking on the reverse. Wear polish is present in one notch. A primary quartz flake was also used as a spokeshave as well as a cutting tool. Its edges were retouched unifacially with one edge used in cutting, the other notched and used as a spokeshave. Eight broken bifaces were also recovered, 6 bro-
<table>
<thead>
<tr>
<th>LITHICS</th>
<th>FEATURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5 6 7 8</td>
</tr>
<tr>
<td>Projectile Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarksville type</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chert: base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Madison type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chert</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hamilton: chert</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unknown type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chert: body fragment</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chert: point tip</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Biface: chert</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Blade, chert</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cutting tool, chert</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cutting tool/spokeshave: quartz</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drill bit- chert</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drill: quartz</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>End Scraper</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side Scraper: chert</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Core: chert, bifacial</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spokeshave: chert</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hammerstone: sandstone</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Primary Flake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaledony</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Chert</td>
<td>43</td>
<td>83</td>
</tr>
<tr>
<td>Quartz</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Secondary Flakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaledony</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Chert</td>
<td>340</td>
<td>1</td>
</tr>
<tr>
<td>Oolitic chert</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Greenstone</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Jasper</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Quartz</td>
<td>149</td>
<td>1</td>
</tr>
<tr>
<td>Tertiary Flakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaledony</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Chert</td>
<td>148</td>
<td>308</td>
</tr>
<tr>
<td>Jasper</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Quartz</td>
<td>101</td>
<td>174</td>
</tr>
<tr>
<td>Shatter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaledony</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chert</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>Jasper</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quartz</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>Nodule Fragment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaledony</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chert</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Quartz</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>945</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Lithics recovered from 44RN39b, compared by feature.
ken in manufacture and 2 likely a midsection of a projectile point. Three sandstone hammerstones were identified, all showing battering from use in hard hammer reduction.

The overall assemblage ofdebitage included 7,465 flakes of chert, quartz, chalcedony, and jasper (Table 4). Chert dominated including 5,593 pieces of debitage, 74.92% of the total. Four varieties of chert were noted: black, grey, oolitic, and a speckled variety of both black and grey. The grey chert, in some cases is the fired black variety, in others likely naturally oxidized. The speckled chert is distinctive and was probably recovered from the similar geological settings. The speckles grade from white in most black samples to bluish-green in the grey variety. The inclusions are irregular in shape but are all rounded in form. This chert is very agate-like and the inclusions are thought to be opal. It is noteworthy that the frequency of grey chert with inclusions diminishes greatly at the tertiary flake level. This may be a function of incomplete firing where the oxidized exterior is completely reduced by the edge straightening preform level. The oolitic chert was very rare on-site with only 13 flakes noted. Quartz included 1,467 (19.65%) pieces of debitage. Quartz was either white or clear crystal with some banded examples included with the white variety. Chalcedony was a minor component with 371 (4.95%) flakes recovered. The chalcedony was either
Figure 18. Selected lithic artifacts recovered from 44RN39b (Top Row: 3 chert Madison points [proveniences 5A2, 5A5, 8D3], 4 quartz Madison points [prov. 5A5, 6D7, 8D2, 5A5]; Second Row: 1 chert Clarksville Point [prov. 6C6], 1 quartz Clarksville Point [prov. 4C2], 1 chert Hamilton point [prov. 6D5], 2 broken chert points [prov. 8D2, 1D3], 1 quartz drill [prov. 1D3], 1 chert drill bit [prov. 1C1]; Bottom Row: 1 chert spokeshave [prov. 5B1], 1 quartz spokeshave/cutting tool [prov. 8D2], 1 chalcedony blade [prov. 6D4], 2 chert end scrapers [prov. 5B2, 5A5], 1 quartz end scraper [prov. 6D8]).

a translucent tan or black. The black variety has been found in at least one quarry site in the county to grade into the black chert. Seven jasper flakes (0.09%) of varied quality were recovered as was a single (0.01%) greenstone flake.

The debitage assemblage is indicative of the general maintenance of the tool kit. Most flakes were secondary (n=3,297, 43.92%) soft-hammer reduction flakes pointing to thinning of preforms and generalized resharpening. Tertiary flakes (n=3,185, 42.44%) were of similar frequency due to field recovery techniques where small flakes were collected in the wet screening process. These flakes are indicative of edge straightening, resharpening, and platform construction. Primary reduction as indicated by the presence of cortex and hard-hammer primary flakes (n=625, 8.33%) was of a more limited nature. Exceptions occurred such as the chert nodules fragments, primary flakes, presence of cortex, and hammerstones recovered from the lower levels of Feature 5 and the nodule fragments and primary flakes throughout Feature 6. The rough ratio is 1 primary to 6 secondary to 5 tertiary flakes. The lithic industry can be characterized as one of maintenance as opposed to tool production. The lithic assemblage for the Protohistoric portion of the site is what would be expected for a small settlement. Hunting was of importance while other cutting, scraping, and shaping functions were taking place. With lithic reduction present but not dominant, tool kit maintenance, including both stone and softer materials, is demonstrated by the recovered lithics.
<table>
<thead>
<tr>
<th>Debitage</th>
<th>Feature</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total N</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flake</td>
<td></td>
</tr>
<tr>
<td>Chalcedony</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>0.40</td>
</tr>
<tr>
<td>Chert</td>
<td>43</td>
<td>1</td>
<td>83</td>
<td>147</td>
<td>98</td>
<td>1</td>
<td>86</td>
<td></td>
<td></td>
<td>459</td>
<td>6.15</td>
</tr>
<tr>
<td>Quartz</td>
<td>14</td>
<td>3</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td>1.82</td>
</tr>
<tr>
<td>Secondary Flake</td>
<td></td>
</tr>
<tr>
<td>Chalcedony</td>
<td>19</td>
<td>1</td>
<td>8</td>
<td>51</td>
<td>30</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>174</td>
<td>2.33</td>
</tr>
<tr>
<td>Chert</td>
<td>340</td>
<td>2</td>
<td>380</td>
<td>613</td>
<td>534</td>
<td>1</td>
<td>641</td>
<td></td>
<td></td>
<td>2512</td>
<td>33.65</td>
</tr>
<tr>
<td>Oolite chert</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>0.17</td>
</tr>
<tr>
<td>Greenstone</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>Jasper</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>0.17</td>
</tr>
<tr>
<td>Quartz</td>
<td>149</td>
<td>1</td>
<td>143</td>
<td>77</td>
<td>72</td>
<td>1</td>
<td>141</td>
<td></td>
<td></td>
<td>584</td>
<td>7.82</td>
</tr>
<tr>
<td>Tertiary flakes</td>
<td></td>
</tr>
<tr>
<td>Chalcedony</td>
<td>15</td>
<td>13</td>
<td>36</td>
<td>20</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>148</td>
<td>1.98</td>
</tr>
<tr>
<td>Chert</td>
<td>148</td>
<td>308</td>
<td>675</td>
<td>445</td>
<td>869</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2445</td>
<td>32.75</td>
</tr>
<tr>
<td>Jasper</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>Quartz</td>
<td>101</td>
<td>174</td>
<td>150</td>
<td>81</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>589</td>
<td>7.89</td>
</tr>
<tr>
<td>Shatter</td>
<td></td>
</tr>
<tr>
<td>Chalcedony</td>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>0.20</td>
</tr>
<tr>
<td>Chert</td>
<td>51</td>
<td>29</td>
<td>4</td>
<td>6</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166</td>
<td>2.22</td>
</tr>
<tr>
<td>Jasper</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>Quartz</td>
<td>49</td>
<td>48</td>
<td>13</td>
<td>9</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
<td>2.06</td>
</tr>
<tr>
<td>Nodule fragment</td>
<td></td>
</tr>
<tr>
<td>Chalcedony</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>Chert</td>
<td>7</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0.15</td>
</tr>
<tr>
<td>Quartz</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>937</td>
<td>3</td>
<td>8</td>
<td>1216</td>
<td>1830</td>
<td>1320</td>
<td></td>
<td></td>
<td>2148</td>
<td>7465</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4. Lithicdebitage recovered from 44RN39b, compared by feature.

Vertebrate Fauna

The analysis of recovered animals bone from the Sawyer site followed normal procedures with the identification of each fragment to the most precise taxon possible with the concomitant recording of the number of elements per taxon and the minimum number of individual animals which could account for that number. The major departure from current zooarchaeological methodology was the failure to calculate biomass based on relative bone weights. Due to the relative small sample size of the individual bones identified (NISP = 459) and the minimum number of individuals calculated (MNI = 35) (Table 5), biomass estimates would prove tenuous at best.

Excavations at the protohistoric portion of the Sawyer site yielded 1,503 bones or bone fragments within the heavy sample. The wet-screen sample was not included due to the numerous minuscule unidentifiable fragments. Of the 1,503, 459 or 30.54% were identified to the a lower taxon than class. A minimum of 16 species were recovered during the excavations at the protohistoric area of 44RN39. Of that total, 7 (43.75%) were mammals, 2 (12.50%) were bird, 1 (6.25%) was amphibian, 2 (12.50%) were reptiles, and 4 (25.00%) were fish (Table 6; see Table 5).

Mammals made up 43.75% of the identified bones. Odocoileus virginianus (white-tailed deer) dominated the class accounting for 27.19% of the overall sample; Ursus americanus (black bear) and Cervus ca-
Vertebrate Species/Family	**Feature**	**Total**	**MNI**
Odocoileus virginianus (white tailed deer) | 32 | 14 13 24 41 | 124 N 27.19 4 N 11.43
Cervus canadensis (elk - wapiti) | 2 | 1 | 3 N 0.66 2 N 5.71
Ursus americanus (black bear) | 4 | 1 1 1 | 1 N 0.22 1 N 2.86
Sylvilagus floridanus (rabbit) | 1 | 1 | 1 N 0.22 1 N 2.86
Procyon lotor (raccoon) | 6 | 1 1 | 1 N 1.32 1 N 2.9
Sciurus sp. (squirrel) | 16 | 11 41 15 | 83 N 18.20 9 N 25.71
Peromyscus sp. (mouse) | 3 | 4 2 | 9 N 1.97 2 N 5.71
Meleagris gallopavo (turkey) | 11 | 114 5 5 14 | 149 N 32.68 3 N 8.57
Celinus virginianus (bobwhite quail) | 1 | 1 | 1 N 0.22 1 N 2.86
Terrepene carolinia (eastern box turtle) | 11 | 114 5 5 14 | 149 N 32.68 3 N 8.57
Sternomotherus odoratus (stinkpot turtle) | 1 | 1 | 1 N 0.22 1 N 2.86
Bufo sp. (toad) | 44 | 44 | 44 N 9.65 4 N 11.43
Ambloplita cavifons | 1 | 1 | 1 N 0.22 1 N 2.86
Catostomidae | 2 | 2 | 2 N 0.44 1 N 2.86
Ictalurus sp. | 3 | 1 1 1 | 3 N 0.66 1 N 2.86
Centrarchidae | 6 | 11 7 | 24 N 5.26 1 N 2.86
TOTAL | 67 | 0 0 152 21 89 0 127 | 456 N 100.00 35 N 100.00

Table 5. List of vertebrate species represented in 44RN39b assemblage, compared by feature.

nadensis (elk) made up 0.88% and 0.66% respectively with *Sciurus* sp. (squirrel) accounting for 1.32% and *Sylvilagus floridanus* (Eastern cottontail rabbit) and *Procyon lotor* (raccoon), each with 0.22% (see Table 5). Due to wet-screen recovery, *Peromyscus* sp. (mouse) accounted for 18.20% of the NISP sample.

The dominance of *Odocoileus virginianus* within the sample is not surprising given the preeminence of the species at other Roanoke River sites such as the Shannon site (Barber and Baroody 1977), Hall Site (Barber 1989), Buzzard Rock site (Barber 1999), Graham-White site (Moore and Lapham 1994), the Booth Farm (Waselkov 1977), the Hales Ford site (Waselkov 1977), the Onion Field site (Barber and Williams 1986), and the Hurt Power Plant site (Barber et al. 1995; Barber and Barber 1995). While the percentages vary greatly from site to site as well as time period, the white-tailed deer was the most important animal hunted in the region. As is often noted, the deer provided, in addition to protein in the form of meat, hides for clothing, brains for tanning, sinew for hafting, bones for tools, hoofs for glue, and marrow for grease. It is obvious that the deer was fundamental to a plethora of aboriginal needs and was the most frequent species sought. A minimum number of 4 individuals were present based on the presence of 4 left distal humeri within the pits. Two mandibles were fetal or newborn and 1 right mandible could be ages to 4.5 years old after Severinghaus (1949). A maxillary fragment appeared to be in the age range of 1.0 year old. As deer are normally born in June/July, at least one deer was harvested in warm weather. Epiphyseal fusion suggests that most of the population was mature at death.

Bone elements from all parts of the deer were present suggesting killing in proximity to the site and on-site butchering. Carnivore scavenging was noted on a number of bones including the distal humeri, calcanea, and an innominate. Several bones were burned including a cranial fragment, 2 antler fragments, 1 right distal femur, and 2 metapodial fragments. One recovered calcaneum was calcine. Bone tools from white-tail deer (most likely) included 2 rib weaving shuttles, 1 rib awl, and an ulnar awl. The weaving tools were manufactured by splitting the rib longitudinally, reducing its thickness. Although fragmented, it is apparent that almost the entire rib was used. One example is thin and curved while the sec-
<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
<th>Total</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>FAUNAL TOOLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odocoileus virginianus (White-tailed deer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weaving tool</td>
<td>2</td>
<td>2</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Awl- rib</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Awl- ulna</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Ursus americanus (black bear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibula awl left distal</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Terrepene carolina (Eastern box turtle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caraplace cup fragment</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.43</td>
</tr>
<tr>
<td>FAUNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odocoileus virginianus (White-tailed deer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranial fragment</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Occipital condyle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antler tine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antler fragment</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Maxillary fragment</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Mandible, left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandible, right</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Incisor fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxillary molar</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>1.52</td>
</tr>
<tr>
<td>Premolar fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar fragment</td>
<td>3</td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td>Mandibular premolar</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Scapula, left</td>
<td>1</td>
<td>2</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Scapula, right</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Scapular fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humeral shaft fragment</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Radius, left</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ulna, left</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Ulna, right</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Lumbar vertebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoracic vertebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebral fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innominante fragment, acetabulum</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Innominante fragment, left</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Innominante fragment, right</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Femur, left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur, right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia, left</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 6 (part 1 of 3). Vertebrate faunal assemblage recovered from 44RN39b, compared by feature.
<table>
<thead>
<tr>
<th>Feature</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Tibia, right'</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td>'Astragalus, left'</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Astragalus, right'</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Calcaneum, left'</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>'Calcaneum, right'</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td>'Metatarsal, left'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Metatarsal shaft fragment'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td>'Metapodial fragment'</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1.52</td>
</tr>
<tr>
<td>'Tarsal/ carpal'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Cervus canadensis (Elk-Wapiti)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Astragalus, left'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Calcaneum, right'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Ursus americanus (Black Bear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Mandibular canine, left'</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>'Tibial shaft fragment, left'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Metatarsal (3rd)'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Sylvilagus floridanus (Rabbit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Femur, right'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Procyon lotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Canine fragment'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.43</td>
</tr>
<tr>
<td>Sciurus sp. (Squirrel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>'Cranial fragment'</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>'Mandible, left'</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Molar'</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Phalange'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Peromyscus sp. (Mouse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Maxillary fragment'</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>5</td>
<td>1.09</td>
</tr>
<tr>
<td>'Maxillary incisors'</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td>1.09</td>
</tr>
<tr>
<td>'Mandible'</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>10</td>
<td>2.17</td>
</tr>
<tr>
<td>'Mandibular incisor'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>'Incisor'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td>'Molar'</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Scapula'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Humerus'</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>8</td>
<td>1.74</td>
</tr>
<tr>
<td>'Radius'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Ulna'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Rib'</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Innominate fragment'</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td>'Femur'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>17.70</td>
</tr>
<tr>
<td>'Tibia'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.52</td>
</tr>
<tr>
<td>'Vertebrac'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.43</td>
</tr>
<tr>
<td>'Sacrum'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>'Phalange'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table 6 (part 2 of 3). Vertebrate faunal assemblage recovered from 44RN39b, compared by feature.
<table>
<thead>
<tr>
<th>Species Description</th>
<th>Feature</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meleagris gallapavo (Turkey)</td>
<td>Humerus, left</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Humeral shaft fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Furculum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Corocoid fragment, right</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Tarsometatarsal, right</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Tibiotarsal, right</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Colinus virginianus (bobwhite quail)</td>
<td>Corocoid fragment</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Bufo sp. (Toad)</td>
<td>Humerus</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>Radius</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Ulna</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>Vertebrae</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>Femur</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Innominat</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1.74</td>
</tr>
<tr>
<td>Terrepene carolina (Eastern Box Turtle)</td>
<td>Carapace, complete</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Carapace fragment</td>
<td>8</td>
<td>70</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>93</td>
<td>20.22</td>
</tr>
<tr>
<td></td>
<td>Plastron fragment</td>
<td>2</td>
<td>39</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>48</td>
<td>10.43</td>
</tr>
<tr>
<td></td>
<td>Immature</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Scapula</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Innominat fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Sternotherus odoratus (Musk turtle)</td>
<td>Carapace fragment</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Ambloplita caurions</td>
<td>Parashenoid</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Cestomidae</td>
<td>Suboperculum, left</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Vertebrab</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Ictaurus sp.</td>
<td>Vertebrab</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Anal spine</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Centrachidaea</td>
<td>Vertebrab</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Anal spine</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Ribs</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>3.91</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>68</td>
<td>2</td>
<td>4</td>
<td>157</td>
<td>26</td>
<td>96</td>
<td>7</td>
<td>136</td>
<td>460</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 6 (part 3 of 3). Vertebrate faunal assemblage recovered from 44RN39b, compared by feature.
ond is broad and flattened. The rib splinter awl was most likely expedient, sharpened, used, and discarded. While these 3 tools are most likely manufactured from deer ribs, they lack diagnostic attributes which lead to unequivocal identification. The deer ulnar awl was more highly curated and are common tool forms on sites in western and central Virginia. The only bone tool definitely not produced from white-tailed deer bone was a bear fibula awl. Not a common tool type, only the Trigg site in Radford, Virginia, has produced similar tools although of a more blunt-ended nature. The Trigg site is also marked by a 17th century occupation and the Ursus americanus awl may be a function of shared knowledge.

Two species of birds were recovered, Meleagris gallopavo (wild turkey) and Colinus virginianus (bobwhite quail). The turkey is usually the most important bird harvested on Late Woodland sites in the mountains of the Commonwealth (Barfield and Barber 1992:229). Bobwhite quail are open grassland dwellers and may be indicative of horticultural field clearing. Amphibians were prehistorically of low subsistence importance and the Bufo sp. (toad) recovered at Sawyer was incidental to subsistence. Turtles were represented in high number with 2 species present, Terrapene carolina (eastern box turtle) and Sternotherus odoratus (stinkpot). A minimum number of 3 box turtles was present and the carapace of one had margins and residual vertebrae removed in cup manufacture. Four species of fish were harvested: Ambloplitus cavifrons (Roanoke bass), Ictalurus sp. (catfish), Catostomidae (sucker), and Centrarchidae (bass / sunfish). All are currently available in the nearby Roanoke River and their distribution was similar in Late Woodland times. It is of note that, even with pit fill wet-screened, fish elements were not of high frequency. Apparently, subsistence did not emphasize piscine harvesting.

The overall faunal pattern adheres to that proposed by Barber (1991) and Barfield and Barber (1992:229) for the mountainous region of Virginia but also follows the conservative hunting pattern proposed by Waseklov (1977) and Barber and Reed (1994). As the Native Americans adopted horticulture and adapted to a more riverine ecology along the Roanoke River, hunting remained of importance. During earlier times (e.g., Barber 1989) in the early to mid-13th century, the faunal utilization pattern was more focal, harvest-
Table 7. Invertebrate faunal assemblage recovered from 44RN39b, compared by feature.

<table>
<thead>
<tr>
<th>Invertebrates</th>
<th>Feature</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5 6 7</td>
</tr>
<tr>
<td>Mussel shell</td>
<td>3 1 6 6</td>
<td>6</td>
</tr>
<tr>
<td>Periwinkle shell</td>
<td>4 1 3 3</td>
<td>8</td>
</tr>
<tr>
<td>Land snail shell</td>
<td>59 69 7</td>
<td>158</td>
</tr>
<tr>
<td>Total</td>
<td>62 0 0</td>
<td>74 7 165</td>
</tr>
</tbody>
</table>

Table 8. Trade goods recovered from 44RN39b, compared by feature.

<table>
<thead>
<tr>
<th>Trade Goods</th>
<th>Feature</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5 6 7</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylindrical solid piece</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sheet copper- elongated rectangle</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Triangular sheet, squashed</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sheet copper- elongated triangle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragment, eroded</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Glass seed bead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>3</td>
<td>1 4 1</td>
</tr>
<tr>
<td>Blue</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>Shell bead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wampum- cylindrical quahog</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seed bead</td>
<td>17</td>
<td>20 2 1</td>
</tr>
<tr>
<td>Bone beads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed bead</td>
<td>4</td>
<td>4 1 1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>26</td>
<td>0 0 13</td>
</tr>
</tbody>
</table>
is straight through and uniform and the terminal points are at precise right angles. These beads may have been produced with iron tools.

The remaining 54 shell beads are of the seed disk variety. With slightly more variation in size, these beads are very similar to their bone counterparts. Of the 47 beads for which drilling protocol could be determined, 32 (68.09%) were drilled straight through and 15 (30.91%) were drilled from both sides. Notably absent are marginella beads, a common trade type for the area in late prehistoric times. As noted at the Hurt Power Plant site along the Roanoke River in the Piedmont, marginella beads seem to lose popularity as the contact period is approached (Barber et al. 1995:297–298).

EUROPEAN TRADE GOODS

Copper Artifacts

Eight copper or copper alloy artifacts were recovered from sealed context. With one exception, all the copper artifacts were of thin sheet copper with a surface patina of green copper oxide (see Table 8). Thickness was in the range of 0.50 mm, too thin for functional use. Four of the pieces were elongated isosceles triangles and 2 were rectangular in form (with 1 piece being too fragmented and bent for identification). One of the triangles was bent over as if squashed. One of the rectangles was perforated in one corner, possible for suspension or tying onto clothing. None of the others had holes. The single artifact which was not sheeted was a cylindrical piece of copper, blunted at one end. Almost 22 mm in length, it was roughly 12 mm in diameter. This piece is interpreted as "stock" material which would be converted at a later time.

As with most copper items recovered in a late prehistoric context in Virginia, the question arises as to the origin of the copper—whether a Native American item from North American sources or a European trade item. Composition analyses using a scanning electron microscope (SEM) was opted for. The material was first prepared by removing a less than 5 mm length of the patina along the edge of the artifact as the surface patina of copper oxide would mask the internal composition. Two copper items were tested for, both from a sealed context in Feature 5 (Barber et al. 1996). Four readings were taken on first example and 3 on the second. The body of the copper was consistently the highest in composition with 66–69%. Zinc was second with 28–29%. Remaining elements were incidental. Inclusions within the body are of interest and are high in lead content from 24–40%. The makeup of the copper artifacts recovered from the Sawyer site are roughly 2/3 copper and 3/10 zinc with particles of lead in the matrix. As Klatka and Klein

Figure 19. Trade goods recovered from 44RN39b (Top Row: 3 pieces of sheet copper [2 polished from prov. 5A2, 5B2, 1 unpolished from 5D6], 1 iron pin or needle [prov. 5B7]; Bottom Row: 1 blue glass seed bead [prov. 4L2], 1 white glass seed bead [prov. 8D2], 3 pieces of wampum [prov. 1C2, 2 from 8D5], 12 shell and bone seed beads [various provs.]).
related for the nearby Graham-White site, this mix of copper and zinc is identified as a yellow brass alloy, definitely of European manufacture.

Glass

Eleven glass seed beads were recovered from the site in a sealed context in Features 1, 4, 5, 6, and 8 (see Table 8). Nine of the beads were small disk seed beads falling into Kidd and Kidd's (1983) typology of IIa13, a simple, round, small to medium, opaque "White" bead. The white beads range in the 3.16–3.32 mm in diameter and between 1.50 mm and 2.18 mm thick. Two of the beads, recovered in Features 4 and 6 were simple blue seed bead disks fitting the Kidd and Kidd (1983) typology as IIa37, a simple circular, small opaque "Aqua Blue" bead and measured 2.70 mm and 3.08 mm in diameter and were 1.76 mm and 2.14 mm in thickness. Of obvious European manufacture, the beads are indicative of European trade.

Iron

Six iron artifacts were recovered from Feature 5 (see Figure 19 and Table 8). The most impressive was an iron pin, sharp at one end and rounded at the opposite. It is cylindrical in cross-section with a 1.61 mm diameter. The object is roughly 56 mm in length. Such an object may have been used in the perforation of bone and shell seed beads as well as other hole producing activities. Five pieces of iron wire were also reported from Feature 5. Short pieces, in the range of 25–30 mm in length, precise use remains unknown.

Bone and Shell Seed Beads

The 22 bone and 54 shell seed beads have been previously discussed under the headings of vertebrate and invertebrate fauna. As many were drilled straight through, without the typical hourglass configuration of the prehistoric period, the distinct possibility that they formed a part of the colonial trade network must be considered.
This report summarizes the results of analysis of 31 archaeobotanical samples from two features at the Sawyer site, a protohistoric period site (ca. A.D. 1600-1630) located in Roanoke County, Virginia. The samples contain over 584 grams of carbonized plant material, including 43.06 grams of plant food remains (Table 9). Maize dominates the assemblage. Nutshell, especially hickory, is abundant. An exceptional number of seeds were identified, including edible fleshy fruits and weeds. Cultigens are represented by maize cobs, cupules and kernels, squash rind, a single squash seed, and two common bean fragments.

Samples were collected from two features (Feature 5 and Feature 6) at the Sawyer site. All material was water screened through 11/16” hardware mesh (Klatka 2000, personal communication). Plant material was hand sorted and sent to the Paleoethnobotanical Laboratory at The Ohio State University for analysis.

All botanical samples were first sifted through nested U.S. Geologic sieves ranging from 4 mm to .5 mm in size. Material 2 mm or greater in size was examined with a binocular microscope under low magnification (10 X to 40 X) and sorted into broad categories. Non-botanical and non-carbonized plant remains were separated and weighed as an aggregate, but not further categorized. Carbonized plant remains were sorted into categories such as wood charcoal, nutshell, seeds, and unknown. With the exception of wood charcoal, all materials were assigned to taxonomic groups whenever possible. Materials passing through the 2 mm screen were carefully scanned; items which were absent from or tend to be under represented in the larger size category (including acorn shell Cucurbita rind, and seeds) were removed down to the smallest screen size in which they were identifiable.

Material less than .5 mm in size is primarily comprised of carbon dust and soil particles and was not systematically examined.

Carbonized plant remains were counted, and weighed by category. Seeds and seed fragments were assigned to a taxonomic category, counted and weighed as an aggregate for each sample. Seed identification was aided by identification manuals (e.g. Delorit 1970; Delorit and Gunn 1986; Martin and Barkley 1961; Montgomery 1977) and the comparative seed collection.

Counts of plant remains, used here in the calculation of percentages, are useful for comparing remains that vary in mass or when less dense plant material representing plant foods (such as seeds and acorn) are present (Pearsall 1989). Component of flotation samples are given by weight in Table 9. Plant food remains are quantified in Tables 10-15. Numbers of fragments appear in Table 10, weights in Table 11, seed counts in Table 12, percentage of identified seeds in Table 13, ubiquity of selected plant food remains in Table 14, and comparison of late prehistoric-Contact period sites in Table 15.

RESULTS

Preservation of carbonized plant remains at the Sawyer site was very good. Diagnostic morphological features were present on most seed remains and other plant parts. Relatively few insects and rootlets were present. This may indicate little site disturbance or may be the result of processing methods and hand sorting prior to analysis.

Seven major botanical classes of carbonized plant material were recovered from the Sawyer site. These are wood or bark; nutshell; nutmeat; maize cob fragments; maize cupules; maize kernels; Cucurbita rind; and seeds. In addition, a single Cucurbita seed was
<table>
<thead>
<tr>
<th>Feature 5</th>
<th>Context</th>
<th>Wood</th>
<th>Unidentified Plants</th>
<th>Plant Foods</th>
<th>Non-botanical</th>
<th>Residue</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 6</td>
<td>1.17</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>East, Level 1</td>
<td>7.67</td>
<td>0.02</td>
<td>1.23</td>
<td>0.17</td>
<td>9.6</td>
<td>18.69</td>
</tr>
<tr>
<td></td>
<td>East, Level 2</td>
<td>16.07</td>
<td>0.02</td>
<td>1.12</td>
<td>0.19</td>
<td>14.59</td>
<td>31.99</td>
</tr>
<tr>
<td></td>
<td>East, Level 3</td>
<td>2.12</td>
<td>0.05</td>
<td>0.29</td>
<td>0.06</td>
<td>2.1</td>
<td>10.51</td>
</tr>
<tr>
<td></td>
<td>East, Level 4</td>
<td>2.9</td>
<td>0.06</td>
<td>0.13</td>
<td>0.16</td>
<td>2.64</td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td>East, Level 5</td>
<td>4.18</td>
<td>–</td>
<td>0.17</td>
<td>0.16</td>
<td>3</td>
<td>7.51</td>
</tr>
<tr>
<td></td>
<td>East, Level 6</td>
<td>27.28</td>
<td>0.3</td>
<td>0.81</td>
<td>0.2</td>
<td>16.29</td>
<td>71.18</td>
</tr>
<tr>
<td></td>
<td>East, Level 7</td>
<td>3.2</td>
<td>0.02</td>
<td>0.13</td>
<td>0.06</td>
<td>3.6</td>
<td>26.92</td>
</tr>
<tr>
<td></td>
<td>West, Level 1</td>
<td>8.06</td>
<td>0.17</td>
<td>2.3</td>
<td>0.44</td>
<td>8.94</td>
<td>19.91</td>
</tr>
<tr>
<td></td>
<td>West, Level 2</td>
<td>13.05</td>
<td>–</td>
<td>1.12</td>
<td>0.48</td>
<td>10.47</td>
<td>30.02</td>
</tr>
<tr>
<td></td>
<td>West, Level 4</td>
<td>2.53</td>
<td>0.05</td>
<td>0.13</td>
<td>0.02</td>
<td>2.17</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>West, Level 5</td>
<td>1.39</td>
<td>–</td>
<td>0.13</td>
<td>0.02</td>
<td>1.19</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>West, Level 6</td>
<td>0.99</td>
<td>–</td>
<td>–</td>
<td>0.02</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West, Level 7</td>
<td>21.66</td>
<td>0.04</td>
<td>0.51</td>
<td>0.31</td>
<td>13.61</td>
<td>36.13</td>
</tr>
<tr>
<td>Feature 5 Total</td>
<td>112.27</td>
<td>0.73</td>
<td>8.07</td>
<td>2.27</td>
<td>88.22</td>
<td>211.56</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 6</th>
<th>Context</th>
<th>Wood</th>
<th>Unidentified Plants</th>
<th>Plant Foods</th>
<th>Non-botanical</th>
<th>Residue</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown level</td>
<td>14.09</td>
<td>0.01</td>
<td>1.42</td>
<td>0.11</td>
<td>6.01</td>
<td>26.85</td>
</tr>
<tr>
<td></td>
<td>Level 6</td>
<td>2.74</td>
<td>0.01</td>
<td>0.74</td>
<td>0.01</td>
<td>1.71</td>
<td>5.21</td>
</tr>
<tr>
<td></td>
<td>Level 7</td>
<td>1.59</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
<td>–</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>North, Level 1</td>
<td>1.54</td>
<td>–</td>
<td>0.21</td>
<td>–</td>
<td>1.03</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>North, Level 2</td>
<td>1.3</td>
<td>–</td>
<td>0.45</td>
<td>–</td>
<td>1.12</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>North, Level 4</td>
<td>3.63</td>
<td>0.05</td>
<td>0.41</td>
<td>0.25</td>
<td>1.87</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>North, Level 5</td>
<td>7.67</td>
<td>0.01</td>
<td>3.24</td>
<td>0.35</td>
<td>4.42</td>
<td>15.69</td>
</tr>
<tr>
<td></td>
<td>North, Level 6</td>
<td>8.79</td>
<td>0.03</td>
<td>1.72</td>
<td>0.04</td>
<td>4.42</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>North, Level 7</td>
<td>19.11</td>
<td>–</td>
<td>0.52</td>
<td>0.24</td>
<td>18.85</td>
<td>38.72</td>
</tr>
<tr>
<td></td>
<td>South, Level 1</td>
<td>2.61</td>
<td>0.02</td>
<td>0.32</td>
<td>0.19</td>
<td>1.79</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td>South, Level 2</td>
<td>3.85</td>
<td>0.01</td>
<td>0.28</td>
<td>0.14</td>
<td>2.4</td>
<td>6.68</td>
</tr>
<tr>
<td></td>
<td>South, Level 3</td>
<td>9.61</td>
<td>0.1</td>
<td>0.73</td>
<td>0.02</td>
<td>9.06</td>
<td>19.52</td>
</tr>
<tr>
<td></td>
<td>South, Level 4</td>
<td>10.99</td>
<td>0.1</td>
<td>1.22</td>
<td>0.3</td>
<td>6.8</td>
<td>19.41</td>
</tr>
<tr>
<td></td>
<td>South, Level 5</td>
<td>36.72</td>
<td>0.38</td>
<td>9.68</td>
<td>0.3</td>
<td>19.87</td>
<td>66.95</td>
</tr>
<tr>
<td></td>
<td>South, Level 6</td>
<td>78.46</td>
<td>0.04</td>
<td>11.18</td>
<td>0.37</td>
<td>34.78</td>
<td>124.83</td>
</tr>
<tr>
<td></td>
<td>South, Level 7</td>
<td>11.9</td>
<td><0.005</td>
<td>2.55</td>
<td>0.28</td>
<td>6.21</td>
<td>20.94</td>
</tr>
<tr>
<td></td>
<td>South, Level 8</td>
<td>3.07</td>
<td>0.02</td>
<td>0.32</td>
<td>0.02</td>
<td>1.58</td>
<td>5.01</td>
</tr>
<tr>
<td>Feature 6 Total</td>
<td>217.67</td>
<td>0.78</td>
<td>34.99</td>
<td>2.72</td>
<td>121.92</td>
<td>378.08</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>329.94</td>
<td>1.51</td>
<td>43.06</td>
<td>4.99</td>
<td>210.14</td>
<td>589.64</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Ethnobotanical remains by weight (grams).
<table>
<thead>
<tr>
<th>Context</th>
<th>Nutsell</th>
<th>Acorn</th>
<th>Walnut</th>
<th>Butternut</th>
<th>Juglandaceae</th>
<th>Hazel</th>
<th>Nut</th>
<th>Hickory Husk</th>
<th>Nut Meat</th>
<th>Acorn</th>
<th>Hickory</th>
<th>Cultigen</th>
<th>Phaseolus vulgaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.6</td>
<td>-</td>
</tr>
<tr>
<td>E, L.1</td>
<td>19</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>112</td>
<td>1</td>
</tr>
<tr>
<td>E, L.2</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>106</td>
<td>13</td>
</tr>
<tr>
<td>E, L.3</td>
<td>9</td>
<td>-</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>E, L.4</td>
<td>4</td>
<td>-</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>E, L.5</td>
<td>6</td>
<td>-</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>E, L.6</td>
<td>39</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>E, L.7</td>
<td>4</td>
<td>-</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>W, L.1</td>
<td>91</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>181</td>
<td>12</td>
</tr>
<tr>
<td>W, L.2</td>
<td>41</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>98</td>
<td>9</td>
</tr>
<tr>
<td>W, L.4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>W, L.5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>W, L.6</td>
<td>-</td>
</tr>
<tr>
<td>W, L.7</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>F.5 Total</td>
<td>265</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>596</td>
<td>66</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 10 (part 1 of 2). Plant food remains by count of fragments.
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>NUTSHELL</th>
<th>HICKORY</th>
<th>NUT MEAT</th>
<th>CULTIGEN</th>
<th>SEEDS TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hickory Acorn</td>
<td>Walnut Acorn</td>
<td>Juglanaceae Acorn</td>
<td>Acorn Cob</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walnut Acorn</td>
<td>Acorn Hazelnut</td>
<td>Acorn Hazelnut</td>
<td>Maize Cob Frag.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butternut Acorn</td>
<td>Hazelnut Acorn</td>
<td>Hazelnut Acorn</td>
<td>Maize Cupule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maize Kernel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cucurbita Rind</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cucurbita Seed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phaseolus vulgaris</td>
<td></td>
</tr>
</tbody>
</table>

Feature 6

<table>
<thead>
<tr>
<th></th>
<th>Hickory Acorn</th>
<th>Walnut Acorn</th>
<th>Juglanaceae Acorn</th>
<th>Acorn Cob</th>
<th>Maize Cob</th>
<th>Maize Cupule</th>
<th>Maize Kernel</th>
<th>Cucurbita Rind</th>
<th>Cucurbita Seed</th>
<th>Phaseolus vulgaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown level</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>129</td>
<td>20</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L.6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L.7</td>
<td>-</td>
</tr>
<tr>
<td>N, L.1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.2</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.4</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.5</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.6</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>286</td>
<td>26</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.7</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.2</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.3</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.4</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.5</td>
<td>47</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.6</td>
<td>52</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.7</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.8</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F6 Total</td>
<td>196</td>
<td>6</td>
<td>41</td>
<td>4</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gr. Total</td>
<td>461</td>
<td>14</td>
<td>45</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 10 (part 2 of 2). Plant food remains by count of fragments.
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>NUTSHELL</th>
<th>HICKORY HUSK</th>
<th>NUT MEAT</th>
<th>CULTIGEN</th>
<th>SEEDS TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hickory</td>
<td>Acorn</td>
<td>Walnut</td>
<td>Butter</td>
<td>Hazelnut</td>
</tr>
<tr>
<td></td>
<td>nut</td>
<td>nut</td>
<td>daceae</td>
<td>Nut</td>
<td>Nut</td>
</tr>
<tr>
<td>Feature 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.1</td>
<td>0.17</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.2</td>
<td>0.13</td>
<td>0.03</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.3</td>
<td>0.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.4</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.5</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.6</td>
<td>0.4</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E, L.7</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W, L.1</td>
<td>0.57</td>
<td>0.01</td>
<td>0.22</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>W, L.2</td>
<td>0.28</td>
<td>0.01</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W, L.4</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W, L.5</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W, L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W, L.7</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F.5 Total</td>
<td>2.17</td>
<td>0.07</td>
<td>0.10</td>
<td>0.22</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 11 (part 1 of 2). Plant food remains by weight (grams).
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>NUTSHELL</th>
<th>HICKORY</th>
<th>NUT MEAT</th>
<th>CULTIGEN</th>
<th>SEEDS TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hickory</td>
<td>Acorn</td>
<td>Walnut</td>
<td>Butter-Nut</td>
<td>Juglar- Hazel</td>
</tr>
<tr>
<td></td>
<td>nut</td>
<td>nut</td>
<td>daceae</td>
<td>Nut</td>
<td></td>
</tr>
<tr>
<td>Feature 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown level</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L.6</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.1</td>
<td>0.08</td>
<td>-</td>
<td>0.02</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>N, L.2</td>
<td>0.05</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.4</td>
<td>0.07</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.5</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>N, L.6</td>
<td>0.11</td>
<td>0.02</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, L.7</td>
<td>0.07</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.1</td>
<td>0.04</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.2</td>
<td>0.08</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>S, L.3</td>
<td>0.07</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.4</td>
<td>0.09</td>
<td>-</td>
<td>0.03</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>S, L.5</td>
<td>0.41</td>
<td>0.01</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S, L.6</td>
<td>0.45</td>
<td>0.01</td>
<td>0.09</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>S, L.7</td>
<td>0.05</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>S, L.8</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F.6 Total</td>
<td>1.81</td>
<td>0.04</td>
<td>0.77</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Gr. Total</td>
<td>3.98</td>
<td>0.11</td>
<td>0.87</td>
<td>0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 11 (part 2 of 2). Plant food remains by weight (grams).
<table>
<thead>
<tr>
<th>Feature</th>
<th>Grains/Greens</th>
<th>Fleshy Fruits</th>
<th>Miscellaneous</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poke Knot-</td>
<td>Bramble</td>
<td>Legume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weed Bears-</td>
<td>Grape Black</td>
<td>Grass Family</td>
<td></td>
</tr>
<tr>
<td></td>
<td>foot Rag-</td>
<td>Sumac Huckle-</td>
<td>Bed- straw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weed</td>
<td>berry Prunus</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family</td>
<td>Persimmon</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>straw Type</td>
<td>Unidentifiable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>E, L.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>E, L.2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E, L.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>E, L.4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>E, L.5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>E, L.6</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>E, L.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>W, L.1</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>W, L.2</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>W, L.4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>W, L.5</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>W, L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>W, L.7</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>F.5 Total</td>
<td>10</td>
<td>29</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>

Table 12 (part 1 of 2). Seed counts.
<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>GRAINS/GREENS</th>
<th>FLESHY FRUITS</th>
<th>MISCELLANEOUS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pole Knotweed</td>
<td>Bearfoot Ragweed</td>
<td>Bramble Grape Black Gum Sumac Huckleberry Prunus Persimmon</td>
<td>Legume Family Grass Family Bedstraw Unknown Type I Unknown Unidentifiable</td>
</tr>
<tr>
<td>Feature 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N, L.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.4</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S, L.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F6 Total</td>
<td>5</td>
<td>1</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Gr. Total</td>
<td>6</td>
<td>1</td>
<td>42</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 12 (part 2 of 2). Seed counts.
<table>
<thead>
<tr>
<th>Category/Taxon</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains/greens</td>
<td>50</td>
<td>44.64</td>
</tr>
<tr>
<td>Poke</td>
<td>6</td>
<td>5.36</td>
</tr>
<tr>
<td>Knotweed</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Bearsfoot</td>
<td>42</td>
<td>37.50</td>
</tr>
<tr>
<td>Ragweed</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Fleshy Fruits</td>
<td>50</td>
<td>44.64</td>
</tr>
<tr>
<td>Black/Raspberry</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Grape</td>
<td>8</td>
<td>7.14</td>
</tr>
<tr>
<td>Black Gum</td>
<td>10</td>
<td>8.93</td>
</tr>
<tr>
<td>Sumac</td>
<td>4</td>
<td>3.57</td>
</tr>
<tr>
<td>Huckelberry</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Prunus</td>
<td>6</td>
<td>5.36</td>
</tr>
<tr>
<td>Persimmon</td>
<td>20</td>
<td>17.86</td>
</tr>
<tr>
<td>Cultigens</td>
<td>3</td>
<td>2.68</td>
</tr>
<tr>
<td>Cucurbita</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Common Bean</td>
<td>2</td>
<td>1.79</td>
</tr>
<tr>
<td>Misc.</td>
<td>9</td>
<td>8.04</td>
</tr>
<tr>
<td>Legume family</td>
<td>5</td>
<td>4.46</td>
</tr>
<tr>
<td>Grass family</td>
<td>3</td>
<td>2.68</td>
</tr>
<tr>
<td>Bedstraw</td>
<td>5</td>
<td>4.46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Percentage of identified seeds.

<table>
<thead>
<tr>
<th>Site</th>
<th>Maize, %</th>
<th>Maize</th>
<th>Maize</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant Food (G)</td>
<td>Ubiquity</td>
<td>Nutshell (G)</td>
<td>Wood (G)</td>
</tr>
<tr>
<td>Stewart*</td>
<td>2</td>
<td>80</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Fox**</td>
<td>7</td>
<td>75</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Hurt Power Plant***</td>
<td>12</td>
<td>73</td>
<td>1.06</td>
<td>0.24</td>
</tr>
<tr>
<td>Graham-White****</td>
<td>25</td>
<td>94</td>
<td>0.67</td>
<td>0.07</td>
</tr>
<tr>
<td>Thomas-Sawyer</td>
<td>83</td>
<td>87</td>
<td>6.28</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Note: Maize percentage based on cobs, cupules and kernels
* Mickelson 1997a; ** Mickelson 1997b; *** Mickelson 1995; **** Gremillion 1993

Table 14. Ubiquity of selected plant food remains.

<table>
<thead>
<tr>
<th>Site</th>
<th>Maize, %</th>
<th>Maize</th>
<th>Maize</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant Food (G)</td>
<td>Ubiquity</td>
<td>Nutshell (G)</td>
<td>Wood (G)</td>
</tr>
<tr>
<td>Stewart*</td>
<td>2</td>
<td>80</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Fox**</td>
<td>7</td>
<td>75</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Hurt Power Plant***</td>
<td>12</td>
<td>73</td>
<td>1.06</td>
<td>0.24</td>
</tr>
<tr>
<td>Graham-White****</td>
<td>25</td>
<td>94</td>
<td>0.67</td>
<td>0.07</td>
</tr>
<tr>
<td>Thomas-Sawyer</td>
<td>83</td>
<td>87</td>
<td>6.28</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table 15. Paleoethnobotanical statistics for Late Woodland-historic sites in southwestern Virginia.
recovered from one sample and a total of two common beans was recovered, one in each feature. These cultigen seeds are reported separate of the seed category.

Nuts

Nutshell comprises 13% of the plant food remains by weight (see Table 11). The samples from the Sawyer site yielded five distinct types of nutshell fragments: hickory (*Carya sp.*); acorn (*Quercus sp.*); walnut (*Juglans nigra*); butternut (*Juglans cinerea*); and hazelnut (*Corylus sp.*). In addition, two samples contain Juglandaceae (Walnut family) fragments of either walnut or hickory that could not be distinguished due to the lack diagnostic features. Hickory is clearly the dominant nut species, distantly followed by walnut, acorn, and butternut. Hazelnut is represented by a few fragments.

Hickory trees can produce an average of 21.1 kg of nuts per hectare, but competition with other animals would have decreased their abundance for human consumption (Talalay et al. 1984). Optimal availability of hickory nuts would have been from late October through early November. Hickory nuts have a high fat content (68.7 g per 100 g) in relation to carbohydrates (12.8 g per 100 g) and are a good source of essential amino acids (Talalay et al. 1984; Gardner 1997). These characteristics of hickory would have complemented starchy crops such as maize which have 3.9 g of fat per 100 g and 72.2 g of carbohydrates per 100 g (Watt and Merrill 1975:26, 34; Gardner 1997). Experimental data indicate that hickory nuts can be processed by boiling to separate the shell from nut meat, employing a "crack-and-pick" method, or by eating crushed nuts whole, expelling the shell residue (Talalay et al. 1984; Gardner 1997).

Walnuts are estimated to produce 1.9 kg of nuts per tree and are common on hillslopes, and well drained, rich bottom lands (Talalay et al. 1984). Walnuts are available from late October though early December (Talalay et al. 1984). Hazelnuts are estimated to produce no more than 100 to 200 pounds of nuts per acre (Talalay et al. 1984:343). However, hazelnuts are a brushy shrub that occur in dense clumps or thickets in open areas or forest edges. Hazelnuts are available from July through September (Peterson 1977). Unlike hickory nuts, walnuts and hazelnuts are not effectively processed by boiling.

Rather, experiments have shown that both walnuts and hazelnuts are most effectively processed by a "crack-and-pick" method (Talalay et al. 1984; Gardner 1997). Butternuts are highly variable and unpredictable in their production, ranging from 5.5 kg to 14.8 kg per tree in experimental collections (Talalay 1984:342). Butternuts prefer rich mesic ravine slopes, river banks and creek bottoms (Braun 1989; Talalay et al. 1984). Butternuts produce a rough, deeply ridged and grooved shell within a thick fleshy husk, similar to walnuts. They produce a low nutmeat to nutshell ratio that was most likely separated utilizing the "crack-and-pick" method, increasing the processing costs (Talalay et. al. 1984; Gardner 1997).

Acorns, which are abundant in the early fall, provide high yields of food per fruit. In addition, acorns have a high carbohydrate and relatively low protein and fiber content (Petruso and Wickens 1984; Smith 1950). Acorns have variable concentrations of tannins and most require leaching to remove these bitter compounds, which increases processing costs (Gardner 1997). The use of acorns as a food source by Native Americans was documented by early explorers throughout eastern North America (Lawson 1709; Silver 1990; Parker 1968, Densmore 1928; Waugh 1916). The degree of importance of acorns varied depending upon the location and observer. Historic observations document the versatility of acorns: famine food, a favorite staple, as a source of oil, and as a condiment (Parker 1968; Driver 1952; Lawson 1709).

Two common ways of extracting acorn nutmeat are by shelling the nuts in mass with a mortar and pestle, or by using a stone and cracking nuts individually (Petruso and Wickens 1984). Mortars cracked the shell allowing the nutmeat to be removed intact but Petruso and Wickens (1984) found this method to be inefficient due to the time incurred separating nutmeat, shell and seed coat fragments. Rather, cracking nutshells individually with a nutting stone produced the maximum amount of acorns with the minimum amounts of shelling byproducts. This method was also noted by Driver (1952) in his studies of the Iroquois.

Cultigen

The cultigen category includes those taxa that can be positively identified as domesticates. Maize (*Zea mays ssp mays*), squash (*Cucurbita pepo*), and common bean
Maize (Zea mays) was the most abundant carbonized plant food remain at the Sawyer site, representing 83% of all plant food remains. Although cob fragments, cupules (cup-like structures containing kernels) and kernels were represented in the samples, the samples were clearly dominated by cupules (see Tables 10 and 11).

Maize identified from eastern North America usually consists of Eastern eight-row cobs, which are morphologically similar to Northern Flint varieties of maize (Wagner 1994). Eastern eight-row maize usually had “tapered ears that frequently have large butts; wide, thick kernels; wide, shallow cupules and strongly paired rows” (Scarry 1994). Because no whole cob fragments were identified for metric analysis, width measurements were taken on a sample of rachis fragments and loose cupules from both Feature 5 and Feature 6. The mean cupule width was 8.59 mm (n=23; sd=0.51). Thus, the maize cupules from the Sawyer site fall within the range of Eastern eight-row cobs, which generally fall in the 7.9 to 11.7 mm range (Wagner 1994).

The earliest directly dated maize from eastern North America comes from Middle Woodland components at the Holding site (Riley et al. 1994) in Illinois; Icehouse Bottom, Tennessee (Chapman and Crites 1987) and Edwin Harness Mound, Ohio (Riley et al. 1994). However, maize is generally absent from or rare in Middle Woodland and early Late Woodland contexts in eastern North America (Wagner 1994). Although maize rises in importance during the Late Woodland period, it does not become a significant component of diets in eastern North America until approximately AD 1000 (Fritz 1990; Smith 1989).

The maize assemblage from the Sawyer site is similar, in most respects, to those from other Late Woodland and Historic sites in southwestern Virginia (see Table 15). However, the Sawyer site differs from other sites in the region with respect to the percentage of plant food represented by maize. Maize constitutes 83% of total plant foods by weight at the Sawyer site, in comparison to 25% the historic Graham-White site, 12% for the Late Woodland-Contact period Hurt Power Plant site, 7% at the Fox site, and 2% at the Stewart site (Gremillion 1993a; Mickelson 1995, 1997a, 1997b). Although explanations for this difference are somewhat tentative without additional samples, there appears to be a general trend toward an increase in the percentage of maize as total plant food by weight from the Late Woodland to the Historic period. However, there is a bias toward larger plant food remain fragments at the Thomas-Sawyer site (i.e., maize, hickory) due to the use of a larger mesh size (1/16” as compared to 0.5 mm as sites sampled by flotation).

Squash (Cucurbita pepo) was represented by numerous rind fragments (n=55) and a single seed. Squash, cultivated by Native Americans since at least the Late Archaic period, was once thought to have been introduced from Mesoamerica. However, recent evidence suggests that some varieties of squash were domesticated in Eastern North America, independently of the Mesoamerican varieties (Decker-Walters 1993; Cowan 1997). Both the flesh and seeds of squash are edible, and the fruits may be used as containers. Squash is probably under-represented in the archaeological record of Eastern North America; it is highly susceptible to decay and does not fare well in the carbonization process (Cowan 1997).

Common bean (Phaseolus vulgaris) or garden bean is an annual plant that was cultivated in the East during the Late Prehistoric and Historic periods. Common bean was only represented by a total of two fragments, one fragment in each feature. The small sample of beans may be partially due to preparation techniques. Beans are usually boiled, making it less likely that they will be carbonized and preserved (Wagner 1986).

Seeds: Grains and Greens

Pokeweed (Phytolacca americana) is an aggressive colonizer of open habitats, both natural and anthropogenic. Yarnell and Black (1985) note that pokeweed seeds are relatively common in Archaic period sites and less abundant in subsequent Late Woodland and Mississippian period sites. However, using the relative abundance of pokeweed seeds as an indicator of its temporal importance as a plant food resource must be made with caution. Pokeweed is a source of greens in which leaves may be collected prior to the production of seeds, when the plant is immature. This factor
may have limited the preservation potential of pokeweed seeds. Pokeweed seeds, fruits, roots, and mature stems are poisonous (Peterson 1977) and are not commonly thought to have been used as a food source. However, pokeweed seeds have been recovered from Mammoth Cave and Salt Cave, Kentucky paleofecal samples (Yarnell 1969; Yarnell 1974) indicating that these seeds were ingested whether intentionally or accidentally.

A single knotweed (Polygonum sp.) fragment was recovered from Feature 6. Knotweed or smartweed prefers moist and disturbed habitats (Erichsen-Brown 1979; Strausbaugh and Core 1978). Knotweed, which flowers from August through September, produces edible seeds as well as leaves that are a source of greens (Peterson 1977).

Bearsfoot (Polymnia uvedalia) is both the most abundant (17%) and ubiquitous (23%) of the identified seeds in the Sawyer archaeobotanical assemblage (see Table 13 and 14). Bearsfoot, a perennial herb that favors open meadow areas and woodlands, produces globular nutlets from July through October (Radford et al. 1968:1101). Although bearsfoot has been described as a tolerated garden weed (Gremillion 1987), the root reportedly has medicinal uses (Moerman 1986; Johnson 2000).

A single common ragweed (Ambrosia artemisiifolia) achene was identified in the Sawyer seed assemblage. A native to Eastern North America, ragweed is abundant in fields and wastelands (USDA 1971:364).

Fleshy Fruit. A single brambles (Rubus sp.) seed was recovered from Feature 6. Brambles are thorny or bristly shrubs that flourish in open thickets and include dewberries, raspberries, and blackberries (USDA 1971; Peterson 1977). Bramble fruits are early summer through early fall (Peterson 1977).

Sumac (Rhus sp.) can be used to make beverages and was valued for its varied medicinal uses (Yanovsky 1935; Moerman 1986). It produces fruit from June to September and is a shrub or small tree that grows in fields and disturbed areas (Yanovsky 1935). This habitat preference, combined with its tolerance of variable environmental conditions, ease in transplantation, and delay in seed production has led Rossen (1992:196) to suggest that sumac was a “possibly protected, encouraged or even cultivated plant.”

Black Gum (Nyssa sylvatica) is a deciduous tree that favors rich soils and can tolerate extremes in soil moisture content (Strausbaugh and Core 1978; Braun 1989). Although the fruits (produced in late spring—April and May) are favored by animals, the bark and roots were valued for their medicinal (anthelminthic and antidiarrheal) qualities (Moerman 1986).

Persimmon (Diospyros virginiana) is the second most abundant and ubiquitous identified seed in the Sawyer seed assemblage (see Table 13 and 14). Persimmon is tolerant and grows in varied sites, especially in moist bottom lands mixed with hardwoods and open, edge habitats associated with successional forest growth (Harlow and Harrar 1969). Persimmon is best known for its astringent properties and tart fruit which is produced in late summer, but is more palatable when fully ripe. The fruit was often dried (Arbet and Bradley 1910) which may account for the numerous carbonized seeds in the Sawyer assemblage.

The remainder of the fleshy fruit seeds from the Sawyer site include grape, huckleberry, and cherry. Grapes (Vitis sp.) produce edible fruit from August to October and occur in thickets and at the edge of woods (Strausbaugh and Core 1978). Huckleberry (Gaylussacia sp) is a shrub which produces fruit in the mid to late summer and is usually found in wooded habitats (Peterson 1977). Wild cherry (Prunus sp.) is a tree/shrub that produces edible fruits from July to October (Peterson 1977). Cherry flourishes in woods and thickets.

Miscellaneous

Bedstraw (Galium sp.) or cleavers produce a bristly fruit in April and can adhere to the plant until fall (Peterson 1977). Bedstraw thrives in a variety of habitats, including woods, thickets, and riverbanks (Strausbaugh and Core 1978; Peterson 1977). The economic importance of bedstraw is the subject of some debate since the seeds easily adhere to clothing and animals passing by. However, the leaves can be used as greens and roasted seeds may be used to make a coffee-like beverage (Peterson 1977; Erichsen-Brown 1979).

Grass and Legume Family. Seeds were classified as miscellaneous when they were identified only to the
family level or did not fit in other categories previously described. These include five wild beans (Fabaceae, the legume family), and three grass seeds (Poaceae, the grass family).

Unknown Type I. This may not be a seed but was extremely abundant in most samples (n=54) Type I plant remains were small fragments with a rough, bumpy surface and generally appeared to be spherical in shape. Although these botanical remains have yet to be identified, they were extremely abundant at the Fox (44SM4) (Mickelson 1997a) site and present at the Stewart (44PK62) (Mickelson 1997b) site (Identified as Unknown Type I at both sites).

Unknown and Unidentifiable Seeds. The seeds that could not be identified at the present time were segregated into unidentifiable and unknown groups. Seeds categorized as “unknown” have distinctive morphological features that may be sufficient to permit taxonomic assignment in the future. Unidentifiable seeds are badly eroded or damaged in such a way that identification is probably not possible.

Summary

The use of relatively large size screen (1/16”) mesh during water screening and subsequent sorting precludes a detailed discussion of archaeobotanical remains at the Sawyer site. It is likely that any small botanical remains present (e.g., seeds and fragments of gourd rind) were lost during processing. In addition, the use of water screening may have damaged or destroyed fragile materials. Despite these biases, a wide array of plant remains was recovered and identified. Maize clearly dominates the assemblage followed by hickory nutshell. These items were supplemented by crops such as beans and squash. An impressive array of seeds was identified, which included seed grains and fleshy fruits. The complete absence of native crops such as chenopod and sumpweed indicates they were not important resources or were lost during processing. In addition, the absence of introduced crops (i.e., peach) that are common by the mid 16th century in the interior of the Southeast (Gremillion 1993b:16), suggests that these items had not yet been adopted into the diets of the inhabitants of the Sawyer site.
6: Conclusion

DATE OF OCCUPATION

Area B of 44RN39 contained refuse filled pits which included European trade goods of iron, copper, glass, and possibly shell. The relatively low frequency would argue for the inclusion of these items within the prehistorically established trading network as opposed to direct European contact. The Batts and Fallom expedition of 1671 may have passed through the Roanoke Valley stopping at the Totera Town of Tutelo (Alvord and Bidgood 1912), although this remains in dispute (Briceland 1987; Barber and Barfield 1997:145–147). The nearby Graham-White site, occupied in the last half of the 17th century would be a more likely candidate for occupation during this exploration. Excavations at Graham-White produced numerous glass beads, iron artifacts, copper alloy artifacts, and a snaphaunce rifle trigger guard (Klatka and Klein 1993). Artifacts from the Sawyer site were less numerous and likely deposited during an earlier period, prior to direct European contact.

Two wood charcoal samples were radiocarbon dated for the site by Beta Analytic, Inc.: one was taken from the lower levels of Feature 5 (Beta-30918), the second from the lower levels of Feature 6 (Beta-30919). Both samples were well-sealed and in an undisturbed context. The dates were A.D. 1600±90 and A.D. 1630±90 respectively. With calibrated intercepts of A.D. 1516, 1591, and 1621 for the first and A.D. 1530, 1537, and 1635 for the second, it is most probable that the site was occupied during the period between A.D. 1621 and 1635.

SETTLEMENT

Area B of 44RN39 appears to have been occupied for more than a seasonal period of time. While in the hierarchy of settlement system types, those used for tribal level society along the Roanoke River are usually framed in terms of village, dispersed community, or hamlet, the occupation observed in Area B can best be described as a household. The core area is relatively small measuring roughly 80' in diameter. Only the unexcavated Feature 12 lies beyond the proposed wind break. No post mold pattern was uncovered which might point to the structure type located in Area B. It is assumed that, given the small settlement size, the dwelling in Area B would be that of a circular, sapling supported wigwam. Such structures are not uncommon in the area, and a number were found down river at the Buzzard Rock site (Clark 1978:24–26). As Egloff et al. (1994:101) point out, however, Late Woodland architectural housing design also included a rectangular/long house pattern. While not common, such a 20' by 40' structure was uncovered in the excavations at the nearby Buzzard Rock site (Clark 1978:25). At the Sawyer site, the smaller, more common circular structure was more likely based on settlement size.

If the household were composed of a nuclear family in the range of 5–8 individuals or an extended kin group of 10–15, a single dwelling structure would have sufficed. Smith (Barbour 1986:161–162) described coastal plain wigwams as housing 6–20 people. Robert Beverley (1947) describes similar structures in 1705. The circular structure excavated at the earlier Buzzard Rock site (44RN2) measured in the range of 20' diameter (Clark 1978) and could have easily housed such a number. This is underscored by its reconstruction where the lofts and sleeping racks lining the interior are expansive (Abbott, personal communication).

While there is no evidence to support a larger village or dispersed community during this time period, the concept of a hamlet cannot be completely rejected. As perceived here, a hamlet would be a settlement unit made up of two or more dwellings. Kinship ties would
likely provide cohesion at the local level. While it is possible that additional clusterings of features dating to this period exist, the salvage of over 120 features over a length of 1,500' along the river terrace system have located none.

Subsistence was comprised of a broad range of components, both domestic and natural. Cultigens included the triad of maize, beans, and squash. Harvested fauna from the surrounding environment was dominated by white-tailed deer, turkey, and eastern box turtle. Fish were apparently not an important food at the Sawyer site. Nut crops were of importance and included hickory, acorn, butternut, and hazelnut. Fruits gathered included persimmon, grape, huckleberry, and cherry. The impressive array of plant remains identified is indicative of a diffuse utilization of the surrounding environment. Due in part to good preservation, the broad use of the environment may provide a window on earlier occupations as where preservation may not be as high. Although the lack of flotation is lamented, the salvage nature of the endeavor, the cold weather, and the volunteer work force did provide for the recovery of a relatively high frequency of plant remains.

The occupation is seen as year round in nature. The presence of storage pits is indicative of the hoarding of food for times of the low biomass ebb in winter. Corn cobs and kernels suggest that horticulture was practiced on-site indicating a spring and summer presence. With a lack of draft animals, corn would most likely be removed from the cob for transport, reducing both mass and weight. The presence of land snails in many of the pits suggests warm weather as does the death date of at least 1 deer. The proposed wind breaks to cold periods and the recovery of carbonized walnut shell points to fall. On the whole, it is here suggested that the site was a year-round occupation for a moderate number of years. This is not to say that the site was not abandoned for periods of foraging, socializing, or ceremonial events, only that the site was a central place, returned to for most of the period of occupation.

Regional Perspective

The Sawyer site Area B contains influences from both the east and west. Primarily viewed as functioning with a Roanoke River context, the Dan River ceramic series is almost indistinguishable from the Clarksville series as defined by Evans (1955) for the lower Roanoke River and extends along the river and its tributaries into the Ridge and Valley as defined as the Wythe series (Holland 1970). As Egloff et al. (1994:94) underscores, there is very little variation in the series either in time and space. During the 17th century, ethnohistoric records indicate the presence of Occaneechi to the east, Saponi or Nahyssons on the middle river (MacCord 1995), and the Tutelo to the west possibly extending into the Ridge and Valley (Alvord and Bidgood 1912). During Late Woodland times, these Siouan speaking peoples (Mooney 1894) along the Roanoke drainage can be recognized by the use of Dan River ceramics. Although Siouan speakers were found in the middle James River as well (Mouer 1981; Hantman 1990), their relationship to the Roanoke is currently problematic. In Gardner’s (1980) sociocultural reconstruction, the Dan River people shared a common language and culture and were likely organized at the tribal level with free movement between communities. While the precise geographic location of the Totera/Tutelo remains in question (see Briceland 1987; MacCord 1995), Barber and Barfield (1997), as did Alvord and Bidgood (1912), have recently argued that this tribal group occupied at least a portion of the Ridge and Valley and that Totera Town should have been within the Roanoke Valley near Roanoke, Virginia. It this is true, the Sawyer site was occupied by members of the Tutelo tribe which had linguistic and cultural affiliations with the Siouan speakers along the Roanoke River and its tributaries.

Nor was the site isolated from the west. Although the influences were not as great, it is obvious that contacts were being made and artifact concepts exchanged. For example, the serrated triangular points may be the result of Midwestern influence. The *Ursus americanus* fibula awl is another example of an artifact type more common in western Virginia. Likewise, the limestone-tempered ceramics found on-site may have been transported in from the west.

Summary

The occupation found at Area B of the Sawyer site (44RN39) represents a small household settlement occupied during the protohistoric time frame at ca. A.D. 1621–1635. European trade goods, such as white
and blue glass beads, sheet copper, and an iron pin, were the result of previously developed Native American trade networks. Ceramics were of the Dan River series indicative of a cultural affinity with the Siouan speakers along the Roanoke River and its tributaries. Lithics were of local chert and quartz including Madison, Clarksville, and Hamilton point styles. The Late Woodland lifestyle continued with little European impact. Ethnobotanical material reflects a combination of reliance on maize, beans, and squash agriculture and the gathering of nut crops and other wild foods. Corn and nuts were stored in the pit features for winter. The analysis of vertebrate fauna points to an adherence to the Late Woodland mountain harvesting where white-tailed deer, wild turkey, and box turtle are augmented by elk and bear. As wet-screening would have recovered any small fish bones, fish were not an important food. Nor were the riverine mussels and particularly the periwinkle shells which were harvested in abundance at other parts of the site as late as the mid-15th century. Occupation of the site was likely year-round with a lack of any overlapping features suggesting that it was of short term duration. Although not conclusive, the ethnohistoric record suggests that the site may be related to the Siouan speakers of the Tutelo tribal group.
References Cited

Alvord, Clarence W., and L. Bidgood
1912 The First Explorations of the Trans-Allegheny Region by the Virginians. The Arthur Clark Company, Cleveland.

Arber, Edward and A.G. Bradley (editors)

Barber, Michael B.
1989 The Vertebrate Faunal Analysis from the Hall Site (44MY33), Montgomery County, Virginia. Report on file with Virginia Department of Historic Resources, Richmond.

Barber, Michael B., and M.F. Barber

Barber, Michael B., M.F. Barber, and C.L. Bowen

Barber, Michael B., and E.B. Barfield

Barber, Michael B., and J. C. Baroody

Barber, Michael B., and C. Reed

Barber, Michael B., T. Solberg, and E. B. Barfield
1996 The Composition of Copper Recovered from Contact Sites in the Lower Piedmont and Southern Ridge and Valley of Virginia. Virginia Journal of Science 47(2).

Barber, Michael B., and J. A. Williams
Barbour, Philip L.

Barfield, Eugene B., and M. B. Barber

Beverly, Robert
1947 The History and Present State of Virginia. The University Press of Virginia, Charlottesville.

Braun, Lucy

Briceland, Alan V.

Chapman, J. and G. D. Crites

Clark, Wayne

Coe, Joffre L.

Coe, Joffre L., and E. Lewis

Cowan, C. Wesley

Decker-Walter, Deena

Delorit, R. J.

Delorit, Richard J. and Charles R. Gunn

Densmore, Frances

Driver, Harold E.

Egloff, Keith T.

Egloff, Keith, M.B. Barber, C. Reed, and T. R. Whyte

Erichsen-Brown, Charlotte
Evans, Clifford

Fritz, Gayle

Gardner, Paul S.

Gremillion, Kristen J.

Hantman, Jeffrey L.

Harlow, William and Edward S. Harrar

Hodges, Mary Ellen N.

Holland, C. G.

Hranicky, William J., and Floyd Painter

Johnson, Tim

Jones, Joe B.

Kidd, Kenneth E., and M. A. Kidd

Klatka, Thomas S., and M.J. Klein

Lawson, John
1709 *A New Voyage To Carolina.* University Microfilms, Ann Arbor.

MacCord, Howard A.

MacCord, Howard A., and W.J. Hranicky

Martin, Alexander C. and William Barkley
Mickelson, Katherine Robinson

1997b Archaeobotany of the Stewart Site (44PK62), Patrick County Virginia. Report submitted to Tom Klatka, Roanoke Regional Preservation Office, Virginia Department of Historic Resources.

Moerman, Daniel E.

Moldenhauer, J. T.

Mooney, James P.

Moore, Elizabeth A., and Heather Lapham

Pearsall, Deborah M.

Petersen, Lee

Petruso, Karl and Jere Wickens

Radford, Albert E., Harry E. Ahles and C. Ritchie Bell

Riley, Thomas J, Gregory R. Wilz, Charles J. Bareis, Andrew C. Fortier and Kathryn E. Parker

Ritchie, William A.

Rossen, Jack

Scarry, Margaret

Severinghaus, C.W.

Silver, Timothy
Smith, Bruce

Smith, J. Russell

Strausbaugh, P.D. and Earl Core

Talalay, Lourie, Donald R. Keller, and Partick Munson

United States Department of Agriculture

Wagner, Gail

Watt, B. K. and A. Merrill

Waugh, F. W.

Waselkov, Gregory

Yanovsky, Elias

Yarnell, Richard

Yarnell, Richard and M. Jean Black
Appendix:
Artifact Finds List by Provenience
General Surface
Ceramic
 1 sherd - cord-marked, heavy grit-tempered
 1 sherd - cord-marked, sand-tempered

Feature 1
1D unknown level
 Sandstone hammerstone - battered along 2 edges, river cobble, flat, too heavy for extended use - 114.31 mm L, 116.50 mm W, 37.30 mm T

Surface
Lithic Tools
 Core (1S-1) - Chert (grey) bifacial expanded core, bipolar reduction, flakes removed with cortex in place on striking platform - 40.24 mm L, 39.55 mm W, 16.11 mm T
 Chert (black) 1 secondary flake
 Chert (grey) 1 secondary flake
 Chalcedony 2 secondary flakes
 Quartz (clear) 1 primary flake
 Quartz (white) 1 secondary flake
 1 secondary flake
Ceramic
 1 sherd - knot-roughed, sand-tempered, typical Dan River

1C1
Fauna
 1 mussel shell
 Odocoileus virginianus
 2 rt dis tibia & shaft - fused
 1 rt dis humerus & shaft - carnivore scavenged, fused
 1 thoracic vertebra fragment
 1 rib fragment
 2 rt scapula - complete
 1 tarsal/carpal
 Sciuerus sp.
 1 cranial fragment
 Meleagris gallopavo
 1 rt tibiotarsal shaft fragment
 Terrapene carolina
 1 carapace fragment
 1 complete carapace
 17 unid mammal fragments
 10 unid mammal fragments - burned
 6 unid mammal fragments - calcine
 12 unid bird fragments
Tools
 1 longitudinally split deer rib - weaving tool
 1 deer rib awl
 1 deer ulna awl

Lithics Tools
 Broken biface (1C1-1) - Black chert with cortex on either edge, medial section
 Drill bit (1C1-2) - Black chert bit broken before hafting/base, flattened/convex cross-section - 8.76 mm W, 5.49 mm T
 Chert (black)
 1 primary flake w/ cortex
 4 primary flakes
 3 secondary flakes w/ cortex
 18 secondary flakes
 3 secondary flakes - proximal
 3 secondary flakes - distal
 3 secondary flakes - medial
 Chert (grey)
 1 primary flake
 3 secondary flakes
 Chert (grey w/ white inclusions)
 1 shatter
 1 primary flake w/ cortex
 4 secondary flakes
Chalcedony
 2 primary flakes
Quartz (clear)
 1 primary flake
 1 secondary flake
Quartz (white)
 2 primary flakes
 8 secondary flakes
Ceramic
 1 sand-tempered, cord marked
Copper
 1 cylindrical solid piece, flattened at one end - 21.76 mm L, 11.66 mm W at flattened end, 9.34 mm W at cylindrical end, 12.06 mm T

1D1
Fauna
 Ursus americanus
 1 lt mandibular canine
 56 unid mammal fragments
 2 unid mammal fragments - burned
 4 unid mammal fragments - calcine
Lithic
 Chert (black)
 4 primary flakes w/ cortex
 1 primary flake
 2 secondary flakes w/ cortex
 3 secondary flakes
 3 secondary
 1 secondary - distal
 Chert (black with white inclusions): 1 primary
 Chert (grey): 1 secondary flake (burned)
 Chert (grey with white inclusions): 2 secondary
 Quartz (clear): 2 secondary
 Quartz (white): 1 primary
Ceramic:
 1 sand-tempered, smoothed cord-marked rim sherd, finger flattened producing subtle wider areas on exterior, heavily burned (blackened)
 1 sand-tempered, cord-marked

1C2
Fauna
 4 land snails (8-10 mm range)

Odocoileus virginianus
 1 rt dis humerus - extreme carnivore scavenging
 1 lt calcaneum - extreme carnivore scavenging
 1 thoracic vertebra fragment
 1 lt mandible - fetal/new born
 1 tarsal/carpal
Sciuerus sp.
 1 cranial fragment
Terrapene carolina
 1 carapace fragment
 19 unid mammal fragments
 4 unid mammal fragments - burned
 2 unid mammal fragments - calcine
 1 unid bird fragment
Shell bead - wampum, cylindrical, quahog purple, finely drilled hole, sharp rt-angle ends - 5.70 mm L, 4.08 mm diameter
Shell seed bead - eroded edges, hole drilled from one side only - 4.00 mm diameter, 1.23 mm T

Lithic
 Chert (black)
 2 secondary flakes w/ cortex
 9 secondary flakes
 3 secondary flakes - distal
 3 tertiary flakes
 Chert (black with white inclusions)
 4 secondary flakes
 2 secondary flakes - distal
 Chert (grey)
 1 primary flake
 4 secondary flakes
 Quartz (white)
 2 shatter
 2 primary
 9 secondary
Ceramic
 1 sherd - cord-marked, sand-tempered
 1 sherd - smooth surface, sand-tempered
 1 sherdlet

1D2
Fauna
1 burned mussel shell
1 land snail frag
Odocoileus virginianus
 1 rt mandible - fetal/new born
 1 lt radial shaft fragment
 1 rt prox tibia - fused
 1 lt calcaneum
 2 lumbar vertebra - articulate
 1 thoracic vertebra
 1 rib fragment
 1 lt innominate fragment

Meleagris gallopavo
 1 rt tarsometatarsal
 35 unid mammal fragments
 5 unid mammal fragments - calcine
 1 unid bird fragment

Lithic Tool
Cutting tool (1D2-1) - Black chert w/ cortex utilized primary flake, expedient micro-flake wear on 1 edge - 22.01 mm L, 20.68 mm W, 5.68 mm T
Chert (black)
 2 primary flakes w/ cortex
 2 secondary flakes w/ cortex
 5 secondary flakes
Chert (black w/ white inclusions): 3 secondary flakes
Chert (grey): 1 secondary
Quartz (white)
 1 shatter
 1 primary flake
 2 secondary
 1 secondary - distal

IC3
Fauna
1 Mussel shell frag
1 Mussel shell (ca. 61 mm L)
5 land snails (8-10 mm range)
1 land snail (1-2 mm range)
Odocoileus virginianus
 1 rib fragment
 1 thoracic vertebra fragment
Sciurus sp.
 1 lt mandibular fragment

Meleagris gallopavo
 1 lt humeral fragment
Terrapene carolina
 1 carapace fragment
38 unid mammal fragments
3 unid mammal fragments - burned
11 unid mammal fragments - calcine
4 unid bird fragments
Bone seed bead - cylindrical, flat, straight drill hole - 3.46 mm diameter, 1.39 mm T
Bone seed bead - cylindrical, flat, straight drill hole, relatively thick - 3.68 mm diameter, 2.10 mm T
Shell seed bead - cylindrical, flat, straight drill hole - 3.89 mm diameter, 0.90 mm T
Shell seed bead - cylindrical, flat, straight drill hole - 3.50 mm diameter, 0.88 mm T

Lithic
Chert (black)
 3 primary flakes w/ cortex
 1 primary flake
 2 secondary flakes w/ cortex
 26 secondary flakes
Chert (black w/ white inclusions)
 2 primary flakes w/ cortex
 7 secondary flakes
Chert (grey)
 1 primary flake w/ cortex
 2 secondary flakes
Chalcedony: 2 secondary flakes
Quartz (clear)
 1 primary flake
 6 secondary flakes
Quartz (white)
 2 chunks w/ cortex
 1 primary flake w/ cortex
 1 primary flake
 14 secondary flakes

Ceramic
1 sherd - cord-marked, sand-tempered
<table>
<thead>
<tr>
<th>1D3</th>
<th>1D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fauna</td>
<td>Debitage</td>
</tr>
<tr>
<td>3 land snails (8-10 mm range)</td>
<td>Chert (black): 1 primary flake</td>
</tr>
<tr>
<td>Odocoileus virginianus</td>
<td>Quartz (clear): 1 secondary flake</td>
</tr>
<tr>
<td>1 rt calcaneum - heavily carnivore scavenged</td>
<td></td>
</tr>
<tr>
<td>1 rib fragment</td>
<td></td>
</tr>
<tr>
<td>Peromyscus sp.</td>
<td>Feature 2</td>
</tr>
<tr>
<td>1 lt mandible</td>
<td>Lithic</td>
</tr>
<tr>
<td>2 maxillary incisors</td>
<td>Chert (black): 1 secondary flake</td>
</tr>
<tr>
<td>Terrapene carolina</td>
<td>Chalcedony: 1 secondary flake</td>
</tr>
<tr>
<td>2 plastron fragments</td>
<td>Quartz (clear): 1 secondary flake - distal</td>
</tr>
<tr>
<td>25 unid mammal fragments</td>
<td></td>
</tr>
<tr>
<td>2 unid mammal fragments - burned</td>
<td>General</td>
</tr>
<tr>
<td>5 unid mammal fragments - calcine</td>
<td>Lithic</td>
</tr>
<tr>
<td>Tools</td>
<td>Chert (black): 1 primary flake</td>
</tr>
<tr>
<td>1 longitudinally split deer rib - weaving tool</td>
<td>Ceramic</td>
</tr>
<tr>
<td>Debitage</td>
<td></td>
</tr>
<tr>
<td>Chert (black)</td>
<td>1 sherd - undetermined surface, sand-tempered</td>
</tr>
<tr>
<td>4 primary flakes w/ cortex</td>
<td>Quartz (white)</td>
</tr>
<tr>
<td>10 secondary flakes</td>
<td>1 primary flake</td>
</tr>
<tr>
<td>Chert (black w/ white inclusions): 1 secondary flake</td>
<td>5 secondary flakes</td>
</tr>
<tr>
<td>Chert (grey): 1 primary flake w/ cortex at both ends</td>
<td>Feature 3</td>
</tr>
<tr>
<td>Chert (grey w/ white inclusions): 1 secondary flake</td>
<td>Lithic</td>
</tr>
<tr>
<td>Chalcedony: 2 secondary flakes</td>
<td>Chert (black): 1 primary flake</td>
</tr>
<tr>
<td></td>
<td>Ceramic</td>
</tr>
<tr>
<td></td>
<td>1 sherd - cord-marked, limestone-tempered</td>
</tr>
<tr>
<td>Drill (1D3-3) - White quartz, irregular, bit broken off, primary flake - 16.08 mm W, 6.21 mm T</td>
<td>Quartz (white)</td>
</tr>
<tr>
<td></td>
<td>1 primary flake</td>
</tr>
<tr>
<td>Debitage</td>
<td>5 secondary flakes</td>
</tr>
<tr>
<td>Chert (black)</td>
<td>3C3</td>
</tr>
<tr>
<td>4 primary flakes w/ cortex</td>
<td>Lithic</td>
</tr>
<tr>
<td>10 secondary flakes</td>
<td>Chert (black): 2 secondary flake</td>
</tr>
<tr>
<td>Chert (black w/ white inclusions): 1 secondary flake</td>
<td>Ceramic</td>
</tr>
<tr>
<td>Chert (grey): 1 primary flake w/ cortex at both ends</td>
<td>1 sherd - cord-marked, limestone-tempered</td>
</tr>
<tr>
<td>Chert (grey w/ white inclusions): 1 secondary flake</td>
<td>3D3</td>
</tr>
<tr>
<td>Chalcedony: 2 secondary flakes</td>
<td>Lithic</td>
</tr>
<tr>
<td></td>
<td>Chert (black): 2 secondary flake</td>
</tr>
<tr>
<td></td>
<td>Chalcedony: 1 primary flake</td>
</tr>
</tbody>
</table>
Ceramic
1 sherd - fabric-impressed, sand-tempered

Feature 4

4C1

Fauna
Odocoileus virginianus
1 lt dis humerus
1 rt dis tibia
1 lt innominate fragment

Peromyscus sp.
1 maxillary incisor

Terrapene carolina
5 carapace fragments
66 unid mammal fragments
2 unid bird fragments

Lithic
Chert (black)
8 primary flakes w/ cortex
2 secondary flakes
1 secondary flake - distal

Chert (black w/ white inclusions)
1 nodule fragment w/ cortex
2 secondary flakes

Chert (grey)
1 secondary flake - distal

Quartz (clear): 2 secondary flakes

Quartz (white)
1 shatter
6 primary flakes
4 secondary flakes

Ceramic
1 fired clay, coil fragment

4C2

Fauna
Odocoileus virginianus
1 incisor
1 lt humeral shaft fragment

Ursus americanus
1 lt tibial shaft fragment

Terrapene carolina
1 complete carapace - 57 fragments
17 carapace fragments - 2 burned
7 plastron fragments
56 unid mammal fragments
8 unid mammal fragments - burned
11 unid mammal fragments - calcine
9 unid bird fragments
Shell seed bead - cylindrical, flat, drilled from 2 sides - 3.74 mm diameter, 1.64 mm T
Shell seed bead - cylindrical, flat, drilled from 2 sides - 3.48 mm diameter, 1.24 mm T
Shell seed bead - cylindrical, flat, drilled from 2 sides - 3.69 mm diameter, 1.04 mm T
Shell seed bead - cylindrical, flat, drilled from 1 side only - 3.58 mm diameter, 1.00 mm T
Shell seed bead - cylindrical, flat, drilled from 1 side only - 4.90 mm diameter, 1.38 mm T

Lithic Tools
Projectile point (1C2-1) - White quartz, Clarksville, incurvate base, irregular outline, slightly excurvate blade edges, flattened cross-section, base slightly ground - 20.24 mm L, 15.73 mm W, 4.16 mm T

Debitage
Chert (black)
9 primary flakes w/ cortex
2 primary flakes
2 secondary flakes w/ cortex
19 secondary flakes
4 tertiary flakes
Chert (black w/ white inclusions)
1 primary flake
3 secondary flakes
Chert (grey)
1 primary flake w/ cortex
6 secondary flakes
Quartz (clear)
1 primary flake
4 secondary flakes
Quartz (white)
1 primary
11 secondary

1 secondary - medial
5 secondary - distal

Ceramic
4 sherds - cord-marked, sand-tempered
1 sherd - smooth surface, sand-tempered

4D2
Fauna
Terrapene carolina
12 plastron fragments
2 plastron fragments - immature
1 innominate fragment - immature
25 unid mammal fragments
15 unid mammal fragments - burned
22 unid mammal fragments - calcine
4 unid bird fragments
Shell seed bead - cylindrical, flat drilled one side only, off center, burned - 4.28 mm diameter, 1.49 mm T

Lithic Tool
Biface (4D2-1) - Black chert nodule fragment w/ cortex, one end bifacially reduced and abandoned due to layering fractures - 29.16 mm L, 28.66 mm W, 11.01 mm T

Debitage
Chert (black)
21 primary flakes w/ cortex
8 secondary flakes w/ cortex
11 secondary flakes
4 secondary flakes - medial
6 secondary flakes - distal
8 tertiary flakes
Chert (black w/ white inclusions)
1 secondary flake w/ cortex
4 secondary flakes
Quartz (clear): 4 secondary flakes
Quartz (white)
1 primary flake
12 secondary flakes
Chert (grey): 2 secondary flakes

4C3
Fauna
Odocoileus virginianus
1 Lt dis tibia
Terrapene carolina
3 carapace fragments
22 unid mammal fragments
8 unid mammal fragments - burned
6 unid mammal fragments - calcine
4 unid bird fragments

Lithic
Chert (black)
4 primary flakes w/ cortex
1 primary flake
3 secondary flakes
Chert (black w/ white inclusions)
2 primary
2 secondary
Chert (grey w/ white inclusions): 3 secondary flakes
Chalcedony: 1 primary flake w/ cortex
Quartz (clear)
1 primary flake
3 secondary flake
Quartz (white): 1 secondary flake
Jasper: 1 secondary (low quality)

4D3
Faunal
Mussel shell fragment
Terrapene carolina
1 carapace cup fragment
Lctalurus sp.
1 vertebra
Catestomidae
1 lt. suboperculum
8 unid mammal fragments
1 unid mammal fragments - burned
12 unid mammal fragments - calcine
2 unid bird fragments
2 unid fish fragments

Lithic
Chert (black)
2 primary flakes w/ cortex
1 secondary flake w/ cortex
Chalcedony: 1 secondary flake
Quartz (white): 1 primary flake

Ceramic
1 sherd - cord-marked smoothed, sand-tempered

Feature 5
5 (unknown level)
Iron - 4 pieces of thin iron wire, ca. 0.25' in length

5A1
Fauna
8 unid mammal fragments - burned
5 unid mammal fragments - calcine

Lithic
Chert (black)
2 primary flakes w/ cortex
2 secondary flakes w/ cortex
2 secondary flakes
Chert (black w/ white inclusions): 2 secondary flakes
Chert (grey w/ white inclusions): 1 secondary flake
Chalcedony
1 primary flake w/ cortex
1 secondary flake - distal
Quartz (white): 2 primary flakes

Ceramic
7 sherds - cord-marked, sand-tempered, classic Dan River

5B1
Lithic
Spokeshave (5B1-1) - Black chert, irregular S-shaped, secondary reduction of obverse, pressure only on reverse, consequently humped (exaggerated flattened/convex cross-section), one end w/ remnants of striking platform, opposite squared, dulling wear on shallow notch - working edge ca. 12.5 mm L, 30.31 mm L, 17.47 mm W, 8.26 mm T
Chert (black): 3 secondary flakes
Chert (black w/ white inclusions): 1 secondary
Chert (grey w/ white inclusions): 1 primary flake
Chalcedony
1 primary flake w/ cortex
2 secondary flakes
Quartz (white) 2 secondary flakes

Ceramic
7 sherds - cord-marked, sand-tempered
1 rim sherd - cord-marked, sand-tempered, finger pinched, top of rim, extends over exterior, same as 5 sherd mend

5A2
Fauna
Ursus americanus
1 canine fragment
1 unid mammal - burned
3 unid mammal - calcine

Lithic
Projectile point (5A2-1) - Black chert, Madison, serrated blade edges, equilateral, good craftsmanship, slightly incurvate base, flattened cross-section - 17.97 mm L, 17.44 mm W, 3.78 mm T
Chert (black)
1 secondary flake
2 secondary flakes - distal
Chert (black w/ white inclusions) 1 primary flake w/ cortex
1 secondary flake
Chert (grey): 2 primary flakes
Chert (grey w/ white inclusions): 2 secondary flakes

Ceramics
1 sherd - fabric-impressed, sand-tempered
5 sherds (mended - 1 5A2, 3 5A4, 1 5A5) - cord-marked, sand-tempered, typical Dan River
1 rim sherd - same as above
2 cord-marked, sand-tempered

5B2
Fauna
2 unid mammal fragments - calcine

Lithic Tool
End scraper (5B2-1) - Black chert primary flake w/ cortex, rectangular in shape, cortex at base, micro-flake wear on working end, expedient, relatively small size - 14.90 mm L, 12.73 mm W, 6.01 mm T

Debitage
Chert (black)
1 primary flake w/ cortex
1 primary flake
1 secondary flake
Chert (black w/ white inclusions): 2 secondary flakes
Chert (grey): 1 secondary w/ pot lid
Ceramic
15 sherds - cord-marked, sand-tempered
Copper - 1 piece of sheet copper cut into an elongated isosceles triangle, submitted for SEM analysis - 21.58 mm L, 7.18 mm W, 0.51 mm T

5A3
Lithic
Chert (black)
1 nodule fragment w/ cortex
1 primary flake w/ cortex
Quartz (clear): 1 secondary flake
Quartz (white): 1 secondary flake

5B3
Fauna
Odocoileus virginianus
1 lt innominate fragment
10 unid mammal fragments
4 unid mammal fragments - burned
5 unid mammal fragments - calcine

Lithic
Biface (5B3-1) - Black chert, broken in manufacture in production of projectile point, broken at mid-section - 16.26 mm W, 5.10 mm T
Chert (black)
1 primary flake w/ cortex
5 secondary flakes
Chert (black w/ white inclusions): 4 secondary flakes
Chalcedony
1 primary flake w/ cortex
1 secondary flake
Quartz (clear)
1 cobble fragment w/ cortex
1 shatter
1 secondary flake
Quartz (white)
1 primary flake
1 secondary flake
Ceramic
1 sherd - cord-marked, sand-tempered

5A4
Fauna
1 unid mammal fragment
Ceramic
2 sherds mend - cord-marked, sand-tempered

5B4
Fauna
Odocoileus virginianus
1 antler fragment
2 maxillary molars

Lithic
Biface (5B4-1) - Black chert, medial section of projectile point, good workmanship
Biface (5B4-2) - Grey chert w/ white inclusions, broken longitudinally, edge not straightened, likely broken in manufacture
Chert (black)
3 primary flakes w/ cortex
1 secondary flake
Chert (black w/ white inclusions)
1 primary flake
1 secondary flake
Chert (grey): 1 secondary flake
Chalcedony: 1 secondary flake
Quartz (clear): 1 secondary flake

5A5
Fauna
3 unid mammal fragments
5 unid mammal fragments - burned
4 unid mammal fragments - calcine

Lithic Tool
Projectile point (5A2-1) - Black chert, Madison, isosceles triangle, straight serrated blade edges, straight base, flattened biconvex cross-section, good craftsmanship - 16.66 mm l, 14.15 mm W, 3.46 mm T
Projectile point (5A2-2) - White (banded) quartz, Madison, isosceles triangle, flattened/convex, serrated, 1 ear broken off, asymmetrical - 20.91 mm L, 14.50 mm W, 3.87 mm T
Endscraper (5A5-3) - Black chert, asymmetric working end, unifacially worked edge, no hafting element, relatively small size - 18.70 mm L, 17.72 mm W, 5.08 mm T
Projectile point (5A5-4) - White (banded) quartz, Madison, tip broken off, incurvate base, excursive blade edges, extremely thin - manufactured on flake - 17.14 mm W, 2.92 mm T

Debitage
Chert (black)
2 primary flakes
1 primary flake - medial
2 secondary flakes
Chert (black w/ white inclusions): 4 secondary flakes
Quartz (white): 1 primary flake

5B5
Fauna
Odocoileus virginianus
1 antler fragment
Cervus canadensis
2 rt calcanea

Lithic
Chert (black): 2 secondary flakes
Chert (black w/ white inclusions)
1 primary w/ cortex
4 secondary flakes
Chert (grey w/ white inclusions): 1 secondary flake

5A6
Lithic
Chert (black)
4 nodule fragments w/ cortex
7 primary flakes w/ cortex
2 primary flakes
1 secondary flake w/ cortex
13 secondary flakes
Chert (black w/ white inclusions)
1 primary flake
1 secondary flake
Chert (grey)
1 secondary flake - pot lidded
2 secondary flakes
Chert (grey w/ white inclusions): 1 secondary flake
Chalcedony: 1 primary flake w/ cortex

5B6
Fauna
9 unid mammal fragments
3 unid mammal fragments - calcine
Lithic
Chert (black)
1 primary flake
1 secondary flake
Chalcedony: 1 secondary flake
Ceramic
1 sherd - cord-marked, sand-tempered
1 sherd - smooth surface, sand-tempered
European Trade Goods
Copper (5D6-1) - Copper/alloy thin sheet, rectangular w/ 2 edges broken, non-functional - 20.58 mm L, 13.92 mm W, 0.40 mm T

5A7
Lithic
Chert (black)
11 primary flakes w/ cortex
2 primary flake

2 secondary flake w/ cortex
13 secondary flakes
1 secondary flake - medial
Chert (black w/ white inclusions)
3 primary flakes
4 secondary flakes
Chert (grey): 1 secondary flake
Chert (grey w/ white inclusions)
1 primary flake w/ cortex
1 primary flake
2 secondary flake w/ cortex
Chalcedony
1 primary flake
3 secondary flakes
Quartz (clear): 1 primary flake
Quartz (white)
1 primary flake
1 secondary flake

5B7
Fauna
Odocoileus virginianus
1 cranial fragment
2 rt prox radii
2 rt prox ulnae
1 lt dis tibia
1 metatarsal shaft fragment
1 metapodial fragment
Terrapene carolina
1 complete carapace
1 complete plastron
3 carapace fragments
69 unid mammal shaft fragments
6 unid mammal fragments - burned
10 unid mammal fragments - calcine

Lithic
Hammerstone (5B7-1) - Sandstone river cobble, small, battered at both ends - 49.48 mm L, 37.14 mm diameter
Hammerstone (5B7-2) - Fine grained sandstone, battered at one end, flat - 105.48 mm L, 49.69 mm W, 21.48 mm T
Debitage
Chert (black)
1 nodule fragment w/ cortex
2 primary flakes w/ cortex
1 primary flake
14 secondary flakes
Chert (black w/ white inclusions)
6 primary flakes w/ cortex
2 secondary flakes w/ cortex
2 secondary flakes
Chert (black)
1 primary flake - broken
8 secondary flakes
1 secondary flake - prox
2 secondary flakes - distal
Chert (black w/ white inclusions)
1 nodule fragment w/ cortex
2 secondary flakes
Quartz (sugary): 1 secondary flake
Quartz (white): 1 primary flake
Iron - 1 pin or needle, cylindrical, rounded at one end, sharp at opposite - roughly 56 mm L, 1.61 mm diameter
Ceramic
1 sherd - fabric-impressed, crushed quartz-tempered
1 fired clay piece - possibly coil

Fauna
Odocoileus virginianus
1 cranial frag
1 unid med mammal shaft frag
15 unid mammal frags
1 unid calcine mammal frag

Ethnobotanical
1 carbonized seed

Lithics Tools
Projectile point base (6C1-1) - Madison, quartz asymmetrical, incurvate base, excurvate blade, edges serrated - 11.94 mm W, 4.64 mm T.

Debitage
Chert (black)
1 primary flake - broken
8 secondary flakes
1 secondary flake - prox
2 secondary flakes - distal
Chert (black w/ white inclusions): 2 secondary flakes
Chert (grey w/ white inclusions)
1 secondary flake
1 tertiary flake
Quartz (clear)
1 secondary flake
1 secondary flake - medial
1 secondary flake - medial

6D1
Fauna
7 unid mammal fragments
1 unid mammmal fragment - burned

Lithics Tools
Scraper (6D1-1) - Utilized primary flake
(6D1-1) - Black chert, large elongated primary flake w/ cortex, one edge w/ micro-flake unifacial damage - 30.74 mm L, 17.16 mm W, 8.69 mm T
Cutting tool (6D1-2) - utilized secondary flake w/ edge w/ polish wear, roughly square - 11.48 mm L, 15.91 mm W, 5.84 mm T

Debitage
Chert (black)
2 primary flakes w/ cortex

Feature 6

Surface
Lithics
Chert (black): 2 secondary flakes
Chert (grey): 1 secondary flake
Chert (grey w/ white inclusions): 1 secondary flake
Chalcedony: 1 secondary flake
Quartz (clear): 1 secondary flake
Ceramic
1 sherd - fabric-impressed, crushed quartz-tempered
1 fired clay piece - possibly coil

6D1
Carbon sample - ca. 29 gms
2 primary flakes
9 secondary flakes
Chert (grey): 1 secondary flake
Chalcedony: 1 secondary flake
Quartz (clear): 2 secondary flakes
Quartz (white): 1 secondary flake

6C2
Ethnobotanical
1 carbon sample - ca. 0.50 grams
Fauna
2 unid mammal fragments - calcine
Lithics
Chert (black)
1 secondary flake w/ cortex
6 secondary flakes
Chert (grey): 1 secondary flake - medial
Quartz (white): 1 primary flake

6C3
Fauna
1 uniden med mammal frag
Lithic
Chert (black)
1 shatter
2 secondary flakes
Chalcedony: 1 secondary flake w/ cortex - proximal
Quartz (clear): 1 secondary flake

6D2
Fauna
Odocoileus virginianus
1 antler fragment
1 rt scapula - complete
4 unid mammal fragments
2 unid mammal - calcine
Lithics
Chert (black)
2 shatter w/ cortex
2 primary flakes w/ cortex
1 primary flake
Chert (black w/ white inclusions): 1 secondary flake
Chert (grey)
1 secondary flake w/ cortex
1 secondary flake
Chalcedony: 1 secondary flake
Quartz (clear)
1 shatter
3 secondary flakes
Quartz (white): 1 secondary flake - distal
Ceramics
1 sherd - cord-marked, limestone-tempered
1 sherd - undetermined, sand-tempered

6D3
Fauna
Odocoileus virginianus
1 antler fragment
1 metapodial fragment
Lithic
Chert (black)
1 nodule frag w/ cortex
1 primary flake
1 secondary flakes
Chert (black w/ white inclusions): 1 secondary flake
Chert (grey) w/ white inclusions
1 secondary flake
1 secondary flake - distal
Quartz (clear): 1 primary flake
Ceramic
1 sherd - simple-stamped, sand-tempered

6D4
Ethnobotanical - 2 corn kernel frag
Fauna
1 mussel shell fragment
1 unid mammal fragment
3 unid mammal fragment - calcine
Lithics Tools
Blade (6D4-1) - Pink chert (exotic to area), thin blade w/ flake curvature, wear on 1 edge - 19.20 mm L, 9.22 mm W, 2.52 mm T w/ curvature, 1.72 mm T
Debitage
Chert (black)
2 primary flakes w/ cortex
1 secondary flake w/ cortex
9 secondary flakes
Chert (black w/ white inclusions)
2 secondary flakes
1 secondary flake - distal
Quartz (clear): 1 secondary flake
Ceramics
2 sherd - fabric-impressed, sand-tempered
1 sherd fragments

6C5
Fauna
Odocoileus virginianus
1 metapodial fragment
6 unid mammal
1 unid mammal - burned
2 unid mammal - calcine
Lithic
Chert (black)
1 primary flake
1 primary flake w/ cortex
13 secondary flakes
Chert (black w/ white inclusions): 2 primary flakes
Chert (grey)
3 secondary flakes
1 secondary flake w/ pot lids
Chert (grey w/ white inclusions): 2 secondary flakes
Chalcedony: 1 primary flake
Quartz (white): 1 secondary flake

6D5
Ethnobotanical
2 carbonized cornkernell
2 carbonized cob frag
2 carbonized seed
1 carbon sample - ca. 2 grams
Fauna
Odocoileus virginianus
2 cranial fragments - 2 burned
1 humeral shaft fragment

1 vertebral fragment
1 rt calcaneum
Ictalus sp.
1 anal spine
14 unid mammal fragments
9 unid mammal fragments - burned
17 unid mammal fragments - calcine
1 unid bird fragment
2 unid fish ribs
Lithic Tool
Projectile point (6D5-1) - Grey chert, Hamilton, elongated isosceles triangle, incurvate base, straight blade edges, flattened cross-section, good craftsmanship - 24.72 mm L, 10.56 mm W, 3.24 mm T
Debitage
Chert (black)
5 primary flakes w/ cortex
1 primary flake
3 secondary flakes w/ cortex
18 secondary flakes
Chert (black w/ white inclusions): 4 secondary flakes
Chert (grey)
1 secondary flake w/ cortex
1 secondary flake
Chert (grey w/ white inclusions): 4 secondary flakes
Quartz (clear): 2 secondary flakes
Quartz (white)
1 primary flake
4 secondary flakes
Ceramic
1 fired clay piece/ lump
1 sherd - cord-marked, limestone-tempered
1 sherd - cord-marked, sand-tempered

6C6
Ethnobotanical
1 carbonized corn cob frag
1 carbonized nut frag
Lithic Tools
PROJECTILE POINT - CLARKSVILLE, GREY CHERT W/ WHITE INCLUSIONS, BASE BROKEN, ISOSCELES TRIANGLE, IRREGULAR EDGES, POOR CRAFTSMANSHIP - 19.98 MM L, 12.40 MM W, 3.64 MM T.
CHERT (BLACK)
1 SHATTER
11 SECONDARY FLAKES
2 SECONDARY FLAKES - DISTAL
CHERT (GREY)
1 PRIMARY FLAKE W/ CORTEX
5 SECONDARY FLAKES
1 SECONDARY FLAKE - PROXIMAL
CALCEDONY
2 NODULE FRAGS W/ CORTEX
1 SECONDARY FLAKE
QUARTZ (CLEAR): 2 SECONDARY FLAKES
QUARTZ (SUGARY): 1 SHATTER
CERAMIC
1 Grit-tempered fabric impressed
1 Fired coil frag

6D6
ETHNOBOTANICAL
1 CORN KERNEL FRAG
2 CORN COB
1 WALNUT FRAG
FAUNA
1 MUSSEL SHELL FRAG
1 PERIWINKLE SHELL
1 LAND SNAIL
ODOCOILEUS VIRGINIANUS
2 ANTLER FRAGMENTS
1 RT DIST TIBIA - CALCINE
1 LT ASTRALGUS
1 RT CALCANEUM - CALCINE
1 METAPODIAL SHAFT FRAGMENT - BURNED
SYLVILAGUS FLORIDANUS
1 RT FEMUR
MELEAGRIS GALLOPAVO
1 FURCULUM
TERRAPENE CAROLINA
4 CARAPACE FRAGMENTS

Ambloplita cavifrons
1 parashenoid
Centrachidae
8 ribs
16 UNID MAMMAL
2 LARGE-SIZED MAMMAL FRAGMENTS
64 UNID MAMMAL FRAGMENTS - CALCINE
WOOD SAMPLE - CA. 95 GRAMS
LITHIC
CHERT (BLACK)
1 SHATTER W/ CORTEX
8 PRIMARY FLAKES W/ CORTEX
2 PRIMARY FLAKES
17 SECONDARY FLAKES
CHERT (BLACK W/ WHITE INCLUSIONS): 2 SECONDARY FLAKES
CHERT (GREY)
1 PRIMARY FLAKE
2 SECONDARY FLAKES
CHERT (GREY W/ WHITE INCLUSIONS): 1 SECONDARY FLAKE
QUARTZ (CLEAR)
2 PRIMARY FLAKES
1 SECONDARY FLAKE
QUARTZ (WHITE): 1 SECONDARY FLAKE
CERAMIC
1 SHERD FRAGMENT
8 FIRED CLAY PIECES/LUMPS (6 POORLY FIRED)

6D7
FAUNA
1 MUSSEL SHELL 72.75 MM L
1 LAND SNAIL
ODOCOILEUS VIRGINIANUS
1 ANTLER FRAGMENT
1 RT MANDIBULAR FRAGMENT - CALCINE
1 RT DIST HUMERUS
1 RT INNOMINATE FRAGMENT - CARNIVORE SCAVENGED
CERVUS CANADENSIS
1 LT ASTRALGUS
PEROMYSCUS SP.
1 INCISOR
Meleagris gallopavo
1 lt humeral shaft - carnivore scavenged
1 rt coronoid fragment
Centrarchidae
3 ribs
24 unid mammal fragments
9 unid mammal fragments - calcine
4 unid bird fragments
1 unid fish fragment
Ethnobotanical
2 corn cobs
5 carbonized seeds
Lithic Tool
Projectile point (6D7-1) - White (banded) quartz, Madison, isosceles triangle, 1 ear broken off, straight blade edges, straight base, flattened/convex cross-section, good craftsmanship - 22.42 mm L, 16 mm W, 4.68 mm T
Chert (black)
2 nodule frag w/ cortex
3 primary flakes w/ cortex
10 secondary flakes
Chert (black with white inclusions): 7 secondary flakes
Chert (grey)
2 primary flakes w/ cortex
1 primary flake
2 secondary flakes
Chert (grey w/ white inclusions)
3 secondary
Quartz (clear)
1 primary flake
2 secondary flakes
Quartz (white): 1 nodule w/ flakes removed
Ceramic
5 fired clay pieces (possibly coil fragments)
2 fire clay pieces/lumps
1 sherd - cord-marked, grit-tempered
Lithic Tool
Endscraper (6D8-1) - High quality white quartz, micro-scraper, parallel-sided with unifacial wear on 1 end
Debitage
Chert (black): 1 secondary flake
Chert (black w/ white inclusions): 2 secondary flakes
Ceramics
1 sherd - cord-marked, grit-tempered
2 sherds - undetermined, limestone-tempered (cavities)
Copper/alloy - 1 elongated isosceles triangle, bent, patinated - roughly 46 mm L, 16.38 mm W, 0.78 mm T
Feature 7
Fauna
8 unid mammal fragments
7C1
Lithic
Chert (black): 1 primary flake
Ceramic
8 sherds - fabric-impressed, limestone-tempered (poorly fired)
2 sherds - undetermined surface, limestone-tempered
1 rim sherd - limestone-tempered, finger pinched, flat, straight
7D1
Fauna
12 unid mammal fragments
Lithic
Chert (grey): 1 secondary flake
7C3
Ceramic
1 sherd - fabric impressed, limestone-tempered
7C4
Ceramic
1 sherd - cord-marked smoothed, crushed quartz tempered (black)
Lithic
Quartz (white): 1 secondary flake - medial
Feature 8

8D1

Fauna
1 Mussel shell frag

Odocoileus virginianus
1 maxillary fragment - ca. 1 year old
1 rt mandible - 4.5 years old
1 rt calcaneum
1 tarsal/carpal

Meleagris gallopavo
1 humeral fragment

Terrapene carolina
1 plastron fragment

Ictalurus sp.
1 anal spine
27 unid mammal fragments
13 unid mammal fragments - burned
14 unid mammal fragments - calcine
Land snail - roughly 3 mm range

Lithic

Chert (black)
1 nodule fragment w/ cortex
5 primary flakes w/ cortex
2 secondary flakes w/ cortex
5 secondary flakes
2 secondary flakes - distal

Chert (black w/ white inclusions)
1 primary flake w/ cortex
3 primary flakes
3 secondary flakes

Chert (grey w/ white inclusions)
1 primary flake
3 secondary flakes

Chalcedony: 2 secondary flakes

Quartz (white): 1 shatter

Ceramic
1 sherd - complicated stamped, sand-tempered
1 sherd - cord-marked, sand-tempered
1 rim sherd - cord-marked smoothed, grit-tempered, straight rim, shallow finger pinching on top
2 sherdlet - undetermined surface, sand-tempered
1 sherdlet - undetermined surface, grit-tempered
1 sherdlet - undetermined surface, limestone-tempered

8D2

Fauna

Odocoileus virginianus
1 occipital condyle
1 rt astragalus
1 metatarsal shaft fragment - burned
3 dis metapodial fragments

Terrapene carolina
3 carapace fragments
4 plastron fragments
21 unid mammal fragments
5 unid mammal fragments - burned
36 unid mammal fragments - calcine
3 unid bird fragments
1 mussel shell fragment
1 land snail - 14 mm diameter range
1 land snail - 4-5 mm range

Shell seed bead - cylindrical, flat, drilled from 2 sides - 3.43 mm diameter, 1.70 mm T

Lithic Tools

 Projectile point (8D2-1) - White (banded) quartz, Madison, isosceles triangle, straight blade edges, 1 edge serrated, straight blade, good craftsmanship, cross-section flattened/convex - 18.98 mm L, 13.68 mm W, 5.83 mm T

 Projectile point (8D2-2) - Grey chert w/ white inclusions, tip/1 ear/part of base broken off, straight ground base, eared, blade edges slightly excurved and serrated, flattened cross-section - 3.81 mm T

Cutting tool / Spokeshave (8D2-3) - White (banded) quartz retouched primary flake, striking platform intact, 2 edges retouched unifacially, slight dulling wear - 20.84 mm L, 22.81 mm W, 5.90 mm T
Debitage
Chert (black)
 8 primary flakes w/ cortex
 2 secondary flakes w/ cortex
 7 secondary flakes
Chert (black w/ white inclusions)
 3 primary flakes
 3 secondary flakes
Chert (grey)
 1 primary flake w/ cortex
 9 secondary flakes
 3 secondary flakes - medial
Chert (grey w/ white inclusions)
 3 primary flakes w/ cortex
 6 secondary flakes
Quartz (clear)
 2 primary flakes
 2 secondary flakes
Ceramic
 1 sherd - knot roughened, grit-tempered
 4 sherds - cord-marked, sand-tempered

8D3
Fauna
 Ursus americanus
 1 Metatarsal 3
 Odocoileus virginianus
 1 rt prox radius
 1 lt prox metatarsal
Terrapene carolina
 2 carapace fragments
 11 unid mammal fragments
 11 unid mammal fragments - burned
 13 unid mammal fragments - calcine
 2 unid bird fragments
 1 mussel shell fragment
Lithic Tool
 Projectile point (8D3-1) - Grey chert with white inclusions, Madison, straight blade edges, straight base, tip broken off, flattened cross-section, good workmanship - 21.50± L, 14.64 mm W, 3.33 mm T

8D4
Debitage
 Chert (black)
 3 primary flakes w/ cortex
 1 primary flake
 7 secondary flakes
 2 tertiary flakes
 Chert (black w/ white inclusions)
 1 primary flake w/ cortex
 3 primary flakes
 7 secondary flakes
 Chert (grey)
 1 primary flake w/ cortex
 2 primary flakes
 4 secondary flakes
 1 secondary flake - distal
 Chert (grey w/ white inclusions): 3 secondary flakes
 Chalcedony: 1 primary flake
 Quartz (white)
 1 nodule fragment w/ cortex
 1 primary flake
 1 secondary flake
Ceramic
 1 sherd - cord-marked, crushed quartz-tempered

Ethnobotanical - 1 charred corn kernel
Fauna
 Odocoileus virginianus
 1 cranial fragment - burned
 1 incisor
 1 rt dis humerus
 1 lt scapula - complete
 1 innominate fragment - acetabulum
 Peromyscus sp.
 1 rt femur
Terrapene carolina
 1 innominate fragment - burned
Bufo sp.
 1 femur
 1 humerus
 3 unid mammal ribs
 21 unid mammal fragments
 16 unid mammal fragments - burned
9 unid mammal fragments - calcine
3 mussel shell fragments
1 periwinkle shell
1 land snail - 30 mm range
1 land snail - 13 mm range
1 land snail - 7.5 mm range
Lithic
Chert (black)
4 primary flakes w/ cortex
2 primary flakes
9 secondary flakes
2 secondary flakes - medial
Chert (black w/ white inclusions)
3 primary flakes
9 secondary flakes
Chert (grey w/ white inclusions)
3 primary flakes
1 secondary flake
Chalcedony
1 nodule w/ cortex
1 primary flake w/ cortex
2 primary flakes
7 secondary flakes
Quartz (white)
2 shatter
3 primary flakes
7 secondary flakes
Ceramic
1 rim sherd - surface smoothed, sand-tempered, straight rim to excursive shoulder, incised with line parallel to rim and sloppy lines oblique and below line, rim finger pinched on top, heavily burned
2 sherd - cord-marked, sand-tempered
1 sherd - smooth surface, sand-tempered
1 sherd - fabric-impressed, limestone-tempered
8DS5
Fauna
Odocoileus virginianus
1 antler tine
13 antler fragments - 2 burned
5 scapular fragments
1 rt innominate fragment
1 rt dis femur - burned
Meleagris gallopavo
1 humeral fragment
Terrapene carolina
2 carapace fragments - burned
1 carapace cup fragment
Centrarchidae
7 ribs
34 unid mammal fragments
6 unid mammal fragments - burned
16 unid mammal fragments - calcine
3 unid bird fragments
Lithic
Chert (black)
5 primary flakes w/ cortex
1 primary flake w/ cortex
10 secondary flakes
Chert (black w/ white inclusions)
2 primary flakes
6 secondary flakes
Chert (grey)
1 secondary flake w/ cortex
Chert (grey w/ white inclusions)
2 primary flakes w/ cortex
3 secondary flakes
1 secondary flake - distal
Chalcedony
1 nodule fragment w/ cortex
4 secondary flakes
Quartz (white)
1 primary flake
12 secondary flakes
Ceramic
1 sherd - cord-marked, sand-tempered
1 sherd - fabric-impressed, incised randomly, sand-tempered
1 sherd - cord-marked smoothed, sand-tempered
1 sherdlet - undetermined surface, sand-tempered
Fauna

Odocoileus virginianus
- 1 antler fragment
- 1 lt dis humerus

Bufo sp.
- 1 rt, 1 lt humerus
- 1 rt, 1 lt femur
- 1 rt, 1 lt innominate
- 1 rt, 1 lt radius
- 1 ulna

Terrapene carolina
- 1 plastron fragment

Sternotherus odoratus
- 1 carapace fragment
- 27 unid mammal fragments
- 6 unid mammal fragments - calcine
- 6 unid bird fragments

Lithic

Chert (black)
- 1 primary flake
- 2 secondary flakes

Chert (grey): 1 primary flake

Quartz (white): 4 primary flakes

Notes:
Lithics - all flakes very small (<15 mm) suggesting retouch with little primary reduction or tool manufacture in general; however, some pits have a fair frequency of nodule fragments and primary flakes w/ cortex - some manufacturing taking place.
Lithics - some chert flakes with white inclusions, both black and grey varieties - likely grey is fired black; chert with inclusions likely local resource.
Lithics - proj pts manufactured on flakes leading to flattened/convex cross-sections.
Ceramics - paste has mica inclusions as per Roanoke River clays.
Ceramics - Dan River - dominated by cord-marking.